68 research outputs found

    Effects of rising temperature on pelagic biogeochemistry in mesocosm systems: a comparative analysis of the AQUASHIFT Kiel experiments

    Get PDF
    A comparative analysis of data, obtained during four indoor-mesocosm experiments with natural spring plankton communities from the Baltic Sea, was conducted to investigate whether biogeochemical cycling is affected by an increase in water temperature of up to 6 °C above present-day conditions. In all experiments, warming stimulated in particular heterotrophic bacterial processes and had an accelerating effect on the temporal development of phytoplankton blooms. This was also mirrored in the build-up and partitioning of organic matter between particulate and dissolved phases. Thus, warming increased both the magnitude and rate of dissolved organic carbon (DOC) build-up, whereas the accumulation of particulate organic carbon (POC) and phosphorus (POP) decreased with rising temperature. In concert, the observed temperature-mediated changes in biogeochemical components suggest strong shifts in the functioning of marine pelagic food webs and the ocean’s biological carbon pump, hence providing potential feedback mechanisms to Earth’s climate system

    Empowerment, stress vulnerability and burnout among portuguese nursing staff

    Get PDF
    The work environment in Portuguese hospitals, characterized by economic cutbacks, can lead to higher levels of burnout experienced by nursing staff. Furthermore, vulnerability to stress can negatively affect the perception of burnout in the workplace. However, structural empowerment is an organizational process that can prevent and decrease burnout among nurses. Consequently, the aim of the study was to examine to what extent structural empowerment and vulnerability to stress can play a predictive role in core burnout in a sample of Portuguese nurses. A convenience sample of 297 nursing staff members from Portuguese hospitals was used in this study. Core burnout was negatively and significantly related to all the dimensions of structural empowerment, and it was positively and significantly related to vulnerability to stress. Regression models showed that core burnout was significantly predicted by access to funds, access to opportunities and vulnerability to stress. Organizational administrations must make every effort in designing interventions focused on structural empowerment, as well as interventions focused on individual interventions that enhance skills for coping with stress.info:eu-repo/semantics/publishedVersio

    Global-scale variations of the ratios of carbon to phosphorus in exported marine organic matter

    Full text link
    The ratio of carbon (C) to phosphorus (P) in marine phytoplankton is thought to be constant throughout the worlds'oceans. Known as the Redfield ratio, this relationship describes the links between carbon and phosphorus cycling and marine ecosystems. However, variations in the stoichiometry of phytoplankton have recently been identified, in particular strong latitudinal variability. Here we assess the impact of this variability in the C:P ratio of biomass on the C:P ratio of organic matter that is exported to the deep ocean using a biogeochemical inverse-model based on a data-constrained ocean circulation model and a global database of dissolved inorganic carbon and phosphate measurements. We identify global patterns of variability in the C:P ratios of exported organic matter, with higher values in the nutrient-depleted subtropical gyres, where organic matter export is relatively low, and lower ratios in nutrient-rich upwelling zones and high-latitude regions, where organic matter export is high. This suggests that total carbon export is relatively constant throughout the oceans, in agreement with recent estimates of carbon fluxes. We conclude that the latitudinal patterns of C:P in exported organic matter are consistent with the large-scale stoichiometric variations in phytoplankton C:P. We suggest that a future expansion of nutrient-depleted waters could result in a shift to more efficient C export that compensates for the expected decline in productivity

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF

    Five insights from the Global Burden of Disease Study 2019

    Get PDF
    The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 provides a rules-based synthesis of the available evidence on levels and trends in health outcomes, a diverse set of risk factors, and health system responses. GBD 2019 covered 204 countries and territories, as well as first administrative level disaggregations for 22 countries, from 1990 to 2019. Because GBD is highly standardised and comprehensive, spanning both fatal and non-fatal outcomes, and uses a mutually exclusive and collectively exhaustive list of hierarchical disease and injury causes, the study provides a powerful basis for detailed and broad insights on global health trends and emerging challenges. GBD 2019 incorporates data from 281 586 sources and provides more than 3.5 billion estimates of health outcome and health system measures of interest for global, national, and subnational policy dialogue. All GBD estimates are publicly available and adhere to the Guidelines on Accurate and Transparent Health Estimate Reporting. From this vast amount of information, five key insights that are important for health, social, and economic development strategies have been distilled. These insights are subject to the many limitations outlined in each of the component GBD capstone papers.Peer reviewe

    Platelet-rich plasma in orthopedic therapy: a comparative systematic review of clinical and experimental data in equine and human musculoskeletal lesions

    Get PDF
    corecore