62 research outputs found

    Event Reconstruction in the PHENIX Central Arm Spectrometers

    Full text link
    The central arm spectrometers for the PHENIX experiment at the Relativistic Heavy Ion Collider have been designed for the optimization of particle identification in relativistic heavy ion collisions. The spectrometers present a challenging environment for event reconstruction due to a very high track multiplicity in a complicated, focusing, magnetic field. In order to meet this challenge, nine distinct detector types are integrated for charged particle tracking, momentum reconstruction, and particle identification. The techniques which have been developed for the task of event reconstruction are described.Comment: Accepted for publication in Nucl. Instrum. A. 34 pages, 23 figure

    Accurate Visuomotor Control below the Perceptual Threshold of Size Discrimination

    Get PDF
    Background: Human resolution for object size is typically determined by psychophysical methods that are based on conscious perception. In contrast, grasping of the same objects might be less conscious. It is suggested that grasping is mediated by mechanisms other than those mediating conscious perception. In this study, we compared the visual resolution for object size of the visuomotor and the perceptual system. Methodology/Principal Findings: In Experiment 1, participants discriminated the size of pairs of objects once through perceptual judgments and once by grasping movements toward the objects. Notably, the actual size differences were set below the Just Noticeable Difference (JND). We found that grasping trajectories reflected the actual size differences between the objects regardless of the JND. This pattern was observed even in trials in which the perceptual judgments were erroneous. The results of an additional control experiment showed that these findings were not confounded by task demands. Participants were not aware, therefore, that their size discrimination via grasp was veridical. Conclusions/Significance: We conclude that human resolution is not fully tapped by perceptually determined thresholds

    Validity of a novel computerized cognitive battery for mild cognitive impairment

    Get PDF
    BACKGROUND: The NeuroTrax Mindstreams computerized cognitive assessment system was designed for widespread clinical and research use in detecting mild cognitive impairment (MCI). However, the capability of Mindstreams tests to discriminate elderly with MCI from those who are cognitively healthy has yet to be evaluated. Moreover, the comparability between these tests and traditional neuropsychological tests in detecting MCI has not been examined. METHODS: A 2-center study was designed to assess discriminant validity of tests in the Mindstreams Mild Impairment Battery. Participants were 30 individuals diagnosed with MCI, 29 with mild Alzheimer's disease (AD), and 39 healthy elderly. Testing was with the Mindstreams battery and traditional neuropsychological tests. Receiver operating characteristic (ROC) analysis was used to examine the ability of Mindstreams and traditional measures to discriminate those with MCI from cognitively healthy elderly. Between-group comparisons were made (Mann-Whitney U test) between MCI and healthy elderly and between MCI and mild AD groups. RESULTS: Mindstreams outcome parameters across multiple cognitive domains significantly discriminated among MCI and healthy elderly with considerable effect sizes (p < 0.05). Measures of memory, executive function, visual spatial skills, and verbal fluency discriminated best, and discriminability was at least comparable to that of traditional neuropsychological tests in these domains. CONCLUSIONS: Mindstreams tests are effective in detecting MCI, providing a comprehensive profile of cognitive function. Further, the enhanced precision and ease of use of these computerized tests make the NeuroTrax system a valuable clinical tool in the identification of elderly at high risk for dementia

    Consensus interpretation of the p.Met34Thr and p.Val37Ile variants in GJB2 by the ClinGen Hearing Loss Expert Panel

    Get PDF
    Purpose: Pathogenic variants in GJB2 are the most common cause of autosomal recessive sensorineural hearing loss. The classification of c.101T>C/p.Met34Thr and c.109G>A/p.Val37Ile in GJB2 are controversial. Therefore, an expert consensus is required for the interpretation of these two variants. Methods: The ClinGen Hearing Loss Expert Panel collected published data and shared unpublished information from contributing laboratories and clinics regarding the two variants. Functional, computational, allelic, and segregation data were also obtained. Case-control statistical analyses were performed. Results: The panel reviewed the synthesized information, and classified the p.Met34Thr and p.Val37Ile variants utilizing professional variant interpretation guidelines and professional judgment. We found that p.Met34Thr and p.Val37Ile are significantly overrepresented in hearing loss patients, compared with population controls. Individuals homozygous or compound heterozygous for p.Met34Thr or p.Val37Ile typically manifest mild to moderate hearing loss. Several other types of evidence also support pathogenic roles for these two variants. Conclusion: Resolving controversies in variant classification requires coordinated effort among a panel of international multi-institutional experts to share data, standardize classification guidelines, review evidence, and reach a consensus. We concluded that p.Met34Thr and p.Val37Ile variants in GJB2 are pathogenic for autosomal recessive nonsyndromic hearing loss with variable expressivity and incomplete penetrance

    Single Identified Hadron Spectra from sqrt(s_NN)=130 GeV Au+Au Collisions

    Full text link
    Transverse momentum spectra and yields of hadrons are measured by the PHENIX collaboration in Au + Au collisions at sqrt(s_NN) = 130 GeV at the Relativistic Heavy Ion Collider (RHIC). The time-of-flight resolution allows identification of pions to transverse momenta of 2 GeV/c and protons and antiprotons to 4 GeV/c. The yield of pions rises approximately linearly with the number of nucleons participating in the collision, while the number of kaons, protons, and antiprotons increases more rapidly. The shape of the momentum distribution changes between peripheral and central collisions. Simultaneous analysis of all the p_T spectra indicates radial collective expansion, consistent with predictions of hydrodynamic models. Hydrodynamic analysis of the spectra shows that the expansion velocity increases with collision centrality and collision energy. This expansion boosts the particle momenta, causing the yield from soft processes to exceed that for hard to large transverse momentum, perhaps as large as 3 GeV/c.Comment: 307 authors, 34 pages text, 28 figures, 16 tables, RevTeX 4. To be submitted to Physical Review C. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Motor Skills Enhance Procedural Memory Formation and Protect against Age-Related Decline

    Get PDF
    The ability to consolidate procedural memories declines with increasing age. Prior knowledge enhances learning and memory consolidation of novel but related information in various domains. Here, we present evidence that prior motor experience-in our case piano skills-increases procedural learning and has a protective effect against age-related decline for the consolidation of novel but related manual movements. In our main experiment, we tested 128 participants with a sequential finger-tapping motor task during two sessions 24 hours apart. We observed enhanced online learning speed and offline memory consolidation for piano players. Enhanced memory consolidation was driven by a strong effect in older participants, whereas younger participants did not benefit significantly from prior piano experience. In a follow up independent control experiment, this compensatory effect of piano experience was not visible after a brief offline period of 30 minutes, hence requiring an extended consolidation window potentially involving sleep. Through a further control experiment, we rejected the possibility that the decreased effect in younger participants was caused by training saturation. We discuss our results in the context of the neurobiological schema approach and suggest that prior experience has the potential to rescue memory consolidation from age-related cognitive decline

    Optimal Parallel Inspection for Finding the First Nonconforming Unit in a Batch---An Information Theoretic Approach

    No full text
    We consider the case of a batch of discrete units produced by a process subject to failures under a known probability distribution function, and apply information theory to the problem of finding the first nonconforming unit in the batch at minimum cost. Two distinct but related aspects of this problem were treated: determining which units should be inspected, and determining how many units should be sent for inspection at the same time. The solution is based on the principles of inspecting the product units that maximize the reduction in the uncertainty regarding the location of the first nonconforming unit, and of minimizing the cost per unit of uncertainty reduced. These principles are formalized by means of a series of theorems leading to an easy-to-implement algorithm for managing parallel inspection. This approach is successfully compared with the optimal solution obtained with dynamic programming and with other heuristics.inspection planning, information theory

    IIE Transactions (2002) 34, 529–540 Self-correcting inspection procedure under inspection errors

    No full text
    In this paper we present a novel treatment of the inspection-system design problem when inspection is unreliable and subject to classification errors. Our approach, based on the theory of Error-Correcting Codes (ECC), leads to the development of a Self-Correcting Inspection (SCI) decision rule that does not require complete knowledge of inspection error probabilities. We show that the proposed rule assures correct classification, if the number of inspection errors is less than a certain number. We analyze the performance of the SCI decision rule under different inspection situations, including some situations that are uncommon in the field of error-correcting codes. Then, we show how the underlying mathematical structure can be applied to determine the number of inspections and the level of inspection reliability in order to minimize the sum of inspection-related costs. The practical contribution of this work lies in that it expands the ability of the designer of inspection systems to deal with cases where there is very little or no information regarding the reliability of the inspection operations. 1. Introduction an
    corecore