80 research outputs found

    Adenoma development in familial adenomatous polyposis andMUTYH-associated polyposis: somatic landscape and driver genes

    Get PDF
    Familial adenomatous polyposis (FAP) and MUTYH‐associated polyposis (MAP) are inherited disorders associated with multiple colorectal adenomas that lead to a very high risk of colorectal cancer. The somatic mutations that drive adenoma development in these conditions have not been investigated comprehensively. In this study we performed analysis of paired colorectal adenoma and normal tissue DNA from individuals with FAP or MAP, sequencing 14 adenoma whole exomes (eight MAP, six FAP), 55 adenoma targeted exomes (33 MAP, 22 FAP) and germline DNA from each patient, and a further 63 adenomas by capillary sequencing (41 FAP, 22 MAP). With these data we examined the profile of mutated genes, the mutational signatures and the somatic mutation rates, observing significant diversity in the constellations of mutated driver genes in different adenomas, and loss‐of‐function mutations in WTX (9%; p < 9.99e‐06), a gene implicated in regulation of the WNT pathway and p53 acetylation. These data extend our understanding of the early events in colorectal tumourigenesis in the polyposis syndromes. © 2015 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland

    Comprehensive pharmacogenetic profiling of the epidermal growth factor receptor pathway for biomarkers of response to, and toxicity from, cetuximab

    Get PDF
    Background Somatic mutations in the epidermal growth factor receptor (EGFR) intracellular signalling pathways predict non-response to cetuximab in the treatment of advanced colorectal cancer (aCRC). We hypothesized that common germline variants within these pathways may also play similar roles. Methods We analysed 54 potentially functional, common, inherited EGFR pathway variants in 815 aCRC patients treated with oxaliplatin-fluoropyrimidine chemotherapy +cetuximab. Primary endpoints were response and skin rash (SR). We had >85% power to detect ORs=1.6 for variants with minor allele frequencies >20%. Results We identified five potential biomarkers for response and four for SR, although none remained significant after correction for multiple testing. Our initial data supported a role for Ser313Pro in PIK3R2 in modulating response to cetuximab - in patients with KRAS wild type CRCs, 36.4% of patients with one allele encoding proline responded, as compared to 71.2% of patients homozygous for alleles encoding serine (OR 0.23, 95% CI 0.09-0.56, P=0.0014) and this association was predictive for cetuximab (Pinteraction=0.017); however, independent replication failed to validate this association. No previously proposed predictive biomarkers were validated. Conclusions Our study highlights the need to validate potential pharmacogenetic biomarkers. We did not find strong evidence for common germline biomarkers of cetuximab response and toxicity

    Selfish or altruistic? An analysis of alarm call function in wild capuchin monkeys, Cebus apella nigritus

    Get PDF
    Alarm calls facilitate some antipredatory benefits of group living but may endanger the caller by attracting the predator's attention. A number of hypotheses invoking kin selection and individual selection have been proposed to explain how such behaviour could evolve. This study tests eight hypotheses for alarm call evolution by examining the responses of tufted capuchin monkeys to models of felids, perched raptors and vipers. Specifically, this study examines: (1) differences between individuals in their propensity to call in response to different threat types, (2) whether there is an audience effect for alarm calling and (3) the response of conspecifics to alarms. Results indicate that the benefits likely to be afforded to the caller vary with stimulus type. Alarm calling in response to felids is most likely selfish, with calls apparently directed towards both the predator and potential conspecific mobbers. Alarm calling in response to vipers attracts additional mobbers as well, but also appears to be driven by kin selection in the case of males and parental care benefits in the case of females. Alarm responses to perched raptors are rare, but seem to be selfish, with callers benefiting by recruiting additional mobbers

    Pharmacogenetic analyses of 2,183 patients with advanced colorectal cancer; Potential role for common dihydropyrimidine dehydrogenase variants in toxicity to chemotherapy.

    Get PDF
    BACKGROUND: Inherited genetic variants may influence response to, and side-effects from, chemotherapy. We sought to generate a comprehensive inherited pharmacogenetic profile for oxaliplatin and 5FU/capecitabine therapy in advanced colorectal cancer (aCRC). METHODS: We analysed more than 200 potentially functional, common, inherited variants in genes within the 5FU, capecitabine, oxaliplatin and DNA repair pathways, together with four rare dihydropyrimidine dehydrogenase (DPYD) variants, in 2183 aCRC patients treated with oxaliplatin-fluoropyrimidine chemotherapy with, or without, cetuximab (from MRC COIN and COIN-B trials). Primary end-points were response, any toxicity and peripheral neuropathy. We had >85% power to detect odds ratios (ORs) = 1.3 for variants with minor allele frequencies >20%. RESULTS: Variants in DNA repair genes (Asn279Ser in EXO1 and Arg399Gln in XRCC1) were most associated with response (OR 1.9, 95% confidence interval [CI] 1.2-2.9, P = 0.004, and OR 0.7, 95% CI 0.5-0.9, P = 0.003, respectively). Common variants in DPYD (Cys29Arg and Val732Ile) were most associated with toxicity (OR 0.8, 95% CI 0.7-1.0, P = 0.008, and OR 1.6, 95% CI 1.1-2.1, P = 0.006, respectively). Two rare DPYD variants were associated with increased toxicity (Asp949Val with neutropenia, nausea and vomiting, diarrhoea and infection; IVS14+1G>A with lethargy, diarrhoea, stomatitis, hand-foot syndrome and infection; all ORs > 3). Asp317His in DCLRE1A was most associated with peripheral neuropathy (OR 1.3, 95% CI 1.1-1.6, P = 0.003). No common variant associations remained significant after Bonferroni correction. CONCLUSIONS: DNA repair genes may play a significant role in the pharmacogenetics of aCRC. Our data suggest that both common and rare DPYD variants may be associated with toxicity to fluoropyrimidine-based chemotherapy

    Genomic sister-disorders of neurodevelopment: an evolutionary approach

    Get PDF
    Genomic sister-disorders are defined here as diseases mediated by duplications versus deletions of the same region. Such disorders can provide unique information concerning the genomic underpinnings of human neurodevelopment because effects of diametric variation in gene copy number on cognitive and behavioral phenotypes can be inferred. We describe evidence from the literature on deletions versus duplications for the regions underlying the best-known human neurogenetic sister-disorders, including Williams syndrome, Velocardiofacial syndrome, and Smith–Magenis syndrome, as well as the X-chromosomal conditions Klinefelter and Turner syndromes. These data suggest that diametric copy-number alterations can, like diametric alterations to imprinted genes, generate contrasting phenotypes associated with autistic-spectrum and psychotic-spectrum conditions. Genomically based perturbations to the development of the human social brain are thus apparently mediated to a notable degree by effects of variation in gene copy number. We also conducted the first analyses of positive selection for genes in the regions affected by these disorders. We found evidence consistent with adaptive evolution of protein-coding genes, or selective sweeps, for three of the four sets of sister-syndromes analyzed. These studies of selection facilitate identification of candidate genes for the phenotypes observed and lend a novel evolutionary dimension to the analysis of human cognitive architecture and neurogenetic disorders

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1ÎČ, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1ÎČ innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Gothic Revival Architecture Before Horace Walpole's Strawberry Hill

    Get PDF
    The Gothic Revival is generally considered to have begun in eighteenth-century Britain with the construction of Horace Walpole’s villa, Strawberry Hill, Twickenham, in the late 1740s. As this chapter demonstrates, however, Strawberry Hill is in no way the first building, domestic or otherwise, to have recreated, even superficially, some aspect of the form and ornamental style of medieval architecture. Earlier architects who, albeit often combining it with Classicism, worked in the Gothic style include Sir Christopher Wren, Nicholas Hawksmoor, William Kent and Batty Langley, aspects of whose works are explored here. While not an exhaustive survey of pre-1750 Gothic Revival design, the examples considered in this chapter reveal how seventeenth- and eighteenth-century Gothic emerged and evolved over the course of different architects’ careers, and how, by the time that Walpole came to create his own Gothic ‘castle’, there was already in existence in Britain a sustained Gothic Revivalist tradition

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Prioritizing and Rationing

    No full text
    • 

    corecore