132 research outputs found

    Adverse Behavioral Changes in Adult Mice Following Neonatal Repeated Exposure to Pain and Sucrose

    Get PDF
    Sucrose is recommended for the treatment of pain during minor procedures in preterm infants in the neonatal intensive care unit (NICU) and is currently used worldwide as the standard of care. We recently reported that adult mice repetitively exposed to sucrose compared to water during the first week of life, irrespective of exposure to an intervention, had significantly smaller brain volumes in large white matter, cortical and subcortical structures (e.g., hippocampus, striatum, fimbria). These structures are important for stress regulation and memory formation. Here, we report the effects of repeated neonatal exposure to pain and sucrose on adult behavior in mice. Neonatal C57BL/6J mice (N = 160, 47% male) were randomly assigned to one of two treatments (sucrose, water) and one of three interventions (needle-prick, tactile, handling). Pups received 10 interventions daily from postnatal day 1 (P1) to P6. A single dose of 24% sucrose or water was given orally 2 min before each intervention. At adulthood (P60-85) mice underwent behavioral testing to assess spatial memory, anxiety, motor function, pain sensitivity, and sugar preference. We found that mice that had received sucrose and handling only, had poorer short-term memory in adulthood compared to water/handling controls (p < 0.05). When exposed to pain, mice treated with repetitive sucrose or water did not differ on memory performance (p = 0.1). A sugar preference test showed that adult mice that received sucrose before an intervention as pups consumed less sugar solution compared to controls or those that received water before pain (p < 0.05). There were no significant group differences in anxiety, motor, or pain sensitivity. In a mouse model that closely mimics NICU care, we show for the first time that memory in adulthood was poorer for mice exposed to pain during the first week of life, irrespective of sucrose treatment, suggesting that sucrose does not protect memory performance when administered for pain. In the absence of pain, early repetitive sucrose exposure induced poorer short-term memory, highlighting the importance of accurate pain assessment

    Quantitative assessment of white matter injury in preterm neonates: Association with outcomes.

    Get PDF
    OBJECTIVE: To quantitatively assess white matter injury (WMI) volume and location in very preterm neonates, and to examine the association of lesion volume and location with 18-month neurodevelopmental outcomes. METHODS: Volume and location of WMI was quantified on MRI in 216 neonates (median gestational age 27.9 weeks) who had motor, cognitive, and language assessments at 18 months corrected age (CA). Neonates were scanned at 32.1 postmenstrual weeks (median) and 68 (31.5%) had WMI; of 66 survivors, 58 (87.9%) had MRI and 18-month outcomes. WMI was manually segmented and transformed into a common image space, accounting for intersubject anatomical variability. Probability maps describing the likelihood of a lesion predicting adverse 18-month outcomes were developed. RESULTS: WMI occurs in a characteristic topology, with most lesions occurring in the periventricular central region, followed by posterior and frontal regions. Irrespective of lesion location, greater WMI volumes predicted poor motor outcomes ( CONCLUSIONS: The predictive value of frontal lobe WMI volume highlights the importance of lesion location when considering the neurodevelopmental significance of WMI. Frontal lobe lesions are of particular concern

    Neonatal Pain-Related Stress Predicts Cortical Thickness at Age 7 Years in Children Born Very Preterm

    Get PDF
    Background Altered brain development is evident in children born very preterm (24–32 weeks gestational age), including reduction in gray and white matter volumes, and thinner cortex, from infancy to adolescence compared to term-born peers. However, many questions remain regarding the etiology. Infants born very preterm are exposed to repeated procedural pain-related stress during a period of very rapid brain development. In this vulnerable population, we have previously found that neonatal pain-related stress is associated with atypical brain development from birth to term-equivalent age. Our present aim was to evaluate whether neonatal pain-related stress (adjusted for clinical confounders of prematurity) is associated with altered cortical thickness in very preterm children at school age. Methods 42 right-handed children born very preterm (24–32 weeks gestational age) followed longitudinally from birth underwent 3-D T1 MRI neuroimaging at mean age 7.9 yrs. Children with severe brain injury and major motor/sensory/cognitive impairment were excluded. Regional cortical thickness was calculated using custom developed software utilizing FreeSurfer segmentation data. The association between neonatal pain-related stress (defined as the number of skin-breaking procedures) accounting for clinical confounders (gestational age, illness severity, infection, mechanical ventilation, surgeries, and morphine exposure), was examined in relation to cortical thickness using constrained principal component analysis followed by generalized linear modeling. Results After correcting for multiple comparisons and adjusting for neonatal clinical factors, greater neonatal pain-related stress was associated with significantly thinner cortex in 21/66 cerebral regions (p-values ranged from 0.00001 to 0.014), predominately in the frontal and parietal lobes. Conclusions In very preterm children without major sensory, motor or cognitive impairments, neonatal pain-related stress appears to be associated with thinner cortex in multiple regions at school age, independent of other neonatal risk factors

    Automatic segmentation of the hippocampus for preterm neonates from early-in-life to term-equivalent age.

    Get PDF
    INTRODUCTION: The hippocampus, a medial temporal lobe structure central to learning and memory, is particularly vulnerable in preterm-born neonates. To date, segmentation of the hippocampus for preterm-born neonates has not yet been performed early-in-life (shortly after birth when clinically stable). The present study focuses on the development and validation of an automatic segmentation protocol that is based on the MAGeT-Brain (Multiple Automatically Generated Templates) algorithm to delineate the hippocampi of preterm neonates on their brain MRIs acquired at not only term-equivalent age but also early-in-life. METHODS: First, we present a three-step manual segmentation protocol to delineate the hippocampus for preterm neonates and apply this protocol on 22 early-in-life and 22 term images. These manual segmentations are considered the gold standard in assessing the automatic segmentations. MAGeT-Brain, automatic hippocampal segmentation pipeline, requires only a small number of input atlases and reduces the registration and resampling errors by employing an intermediate template library. We assess the segmentation accuracy of MAGeT-Brain in three validation studies, evaluate the hippocampal growth from early-in-life to term-equivalent age, and study the effect of preterm birth on the hippocampal volume. The first experiment thoroughly validates MAGeT-Brain segmentation in three sets of 10-fold Monte Carlo cross-validation (MCCV) analyses with 187 different groups of input atlases and templates. The second experiment segments the neonatal hippocampi on 168 early-in-life and 154 term images and evaluates the hippocampal growth rate of 125 infants from early-in-life to term-equivalent age. The third experiment analyzes the effect of gestational age (GA) at birth on the average hippocampal volume at early-in-life and term-equivalent age using linear regression. RESULTS: The final segmentations demonstrate that MAGeT-Brain consistently provides accurate segmentations in comparison to manually derived gold standards (mean Dice\u27s Kappa \u3e 0.79 and Euclidean distance CONCLUSIONS: MAGeT-Brain is capable of segmenting hippocampi accurately in preterm neonates, even at early-in-life. Hippocampal asymmetry with a larger right side is demonstrated on early-in-life images, suggesting that this phenomenon has its onset in the 3rd trimester of gestation. Hippocampal volume assessed at the time of early-in-life and term-equivalent age is linearly associated with GA at birth, whereby smaller volumes are associated with earlier birth

    Hippocampus, Amygdala, and Thalamus Volumes in Very Preterm Children at 8 Years: Neonatal Pain and Genetic Variation

    Get PDF
    Altered hippocampal morphology and reduced volumes have been found in children born preterm compared to full-term. Stress inhibits neurogenesis in the hippocampus, and neonatal stress/noxious stimulation in rodent pups are associated with long-term alterations in hippocampal volumes. We have previously shown reduced cortical thickness and cerebellar volumes in relation to more exposure to pain-related stress of neonatal invasive procedures in children born very preterm. We have reported targeted gene-by-pain environment interactions that contribute to long-term brain development and outcomes in this population. We now aim to determine whether exposure to pain-related stress (adjusted for clinical factors and genotype) differentially impacts regional structures within the limbic system and thalamus, and investigate relationships with outcomes in very preterm children. Our study included 57 children born very preterm (<32 weeks GA) followed longitudinally from birth who underwent 3-D T1 MRI neuroimaging at ∼8 years. Hippocampal subfields and white matter tracts, thalamus and amygdala were automatically segmented using the MAGeT Brain algorithm. The relationship between those subcortical brain volumes (adjusted for total brain volume) and neonatal invasive procedures, gestational age (GA), illness severity, postnatal infection, days of mechanical ventilation, number of surgeries, morphine exposure, and genotype (COMT, SLC6A4, and BDNF) was examined using constrained principal component analysis. We found that neonatal clinical factors and genotypes accounted for 46% of the overall variance in volumes of hippocampal subregions, tracts, basal ganglia, thalamus and amygdala. After controlling for clinical risk factors and total brain volume, greater neonatal invasive procedures was associated with lower volumes in the amygdala and thalamus (p = 0.0001) and an interaction with COMT genotype predicted smaller hippocampal subregional volume (p = 0.0001). More surgeries, days of ventilation, and lower GA were also related to smaller volumes in various subcortical regions (p < 0.002). These reduced volumes were in turn differentially related to poorer cognitive, visual-motor and behavioral outcomes. Our findings highlight the complexity that interplays when examining how exposure to early-life stress may impact brain development both at the structural and functional level, and provide new insight on possible novel avenues of research to discover brain-protective treatments to improve the care of children born preterm

    Pregnancy-specific stress, fetoplacental haemodynamics, and neonatal outcomes in women with small for gestational age pregnancies: a secondary analysis of the multicentre Prospective Observational Trial to Optimise Paediatric Health in Intrauterine Growth Restriction

    Get PDF
    Objectives: To examine associations between maternal pregnancy-specific stress and umbilical (UA PI) and middle cerebral artery pulsatility indices (MCA PI), cerebroplacental ratio, absent end diastolic flow (AEDF), birthweight, prematurity, neonatal intensive care unit admission and adverse obstetric outcomes in women with small for gestational age pregnancies. It was hypothesised that maternal pregnancy-specific stress would be associated with fetoplacental haemodynamics and neonatal outcomes. Design: This is a secondary analysis of data collected for a large-scale prospective observational study. Setting: This study was conducted in the seven major obstetric hospitals in Ireland and Northern Ireland. Participants: Participants included 331 women who participated in the Prospective Observational Trial to Optimise Paediatric Health in Intrauterine Growth Restriction. Women with singleton pregnancies between 24 and 36 weeks gestation, estimated fetal weight <10th percentile and no major structural or chromosomal abnormalities were included. Primary and secondary outcome measures Serial Doppler ultrasound examinations of the umbilical and middle cerebral arteries between 20 and 42 weeks gestation, Pregnancy Distress Questionnaire (PDQ) scores between 23 and 40 weeks gestation and neonatal outcomes. Results: Concerns about physical symptoms and body image at 35–40 weeks were associated with lower odds of abnormal UAPI (OR 0.826, 95% CI 0.696 to 0.979, p=0.028). PDQ score (OR 1.073, 95% CI 1.012 to 1.137, p=0.017), concerns about birth and the baby (OR 1.143, 95% CI 1.037 to 1.260, p=0.007) and concerns about physical symptoms and body image (OR 1.283, 95% CI 1.070 to 1.538, p=0.007) at 29–34 weeks were associated with higher odds of abnormal MCA PI. Concerns about birth and the baby at 29–34 weeks (OR 1.202, 95% CI 1.018 to 1.421, p=0.030) were associated with higher odds of AEDF. Concerns about physical symptoms and body image at 35–40 weeks were associated with decreased odds of neonatal intensive care unit admission (OR 0.635, 95% CI 0.435 to 0.927, p=0.019). Conclusions: These findings suggest that fetoplacental haemodynamics may be a mechanistic link between maternal prenatal stress and fetal and neonatal well-being, but additional research is required

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
    corecore