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Introduction: The hippocampus, a medial temporal lobe structure central to learning and memory, is particularly
vulnerable in preterm-born neonates. To date, segmentation of the hippocampus for preterm-born neonates has
not yet been performed early-in-life (shortly after birth when clinically stable). The present study focuses on the
development and validation of an automatic segmentation protocol that is based on the MAGeT-Brain (Multiple
Automatically Generated Templates) algorithm to delineate the hippocampi of preterm neonates on their brain
MRIs acquired at not only term-equivalent age but also early-in-life.
Methods: First, we present a three-step manual segmentation protocol to delineate the hippocampus for
preterm neonates and apply this protocol on 22 early-in-life and 22 term images. These manual segmenta-
tions are considered the gold standard in assessing the automatic segmentations. MAGeT-Brain, automatic
hippocampal segmentation pipeline, requires only a small number of input atlases and reduces the registra-
tion and resampling errors by employing an intermediate template library. We assess the segmentation
accuracy of MAGeT-Brain in three validation studies, evaluate the hippocampal growth from early-in-life
to term-equivalent age, and study the effect of preterm birth on the hippocampal volume. The first
experiment thoroughly validates MAGeT-Brain segmentation in three sets of 10-fold Monte Carlo cross-
validation (MCCV) analyses with 187 different groups of input atlases and templates. The second experi-
ment segments the neonatal hippocampi on 168 early-in-life and 154 term images and evaluates the
hippocampal growth rate of 125 infants from early-in-life to term-equivalent age. The third experiment an-
alyzes the effect of gestational age (GA) at birth on the average hippocampal volume at early-in-life and
term-equivalent age using linear regression.
Results: The final segmentations demonstrate that MAGeT-Brain consistently provides accurate segmentations in
comparison to manually derived gold standards (mean Dice3s Kappa N 0.79 and Euclidean distance b1.3 mm be-
tween centroids). Using this method, we demonstrate that the average volume of the hippocampus is significantly
different (p b 0.0001) in early-in-life (621.8 mm3) and term-equivalent age (958.8 mm3). Using these differences,
we generalize the hippocampal growth rate to 38.3 ± 11.7 mm3/week and 40.5 ± 12.9 mm3/week for the left
and right hippocampi respectively. Not surprisingly, younger gestational age at birth is associated with smaller vol-
umes of the hippocampi (p = 0.001).
Conclusions:MAGeT-Brain is capable of segmenting hippocampi accurately in pretermneonates, even at early-in-life.
Hippocampal asymmetry with a larger right side is demonstrated on early-in-life images, suggesting that this
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phenomenonhas its onset in the 3rd trimester of gestation. Hippocampal volume assessed at the time of early-in-life
and term-equivalent age is linearly associatedwith GA at birth, whereby smaller volumes are associatedwith earlier
birth.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Preterm birth is increasingly prevalent, with recentworld-wide esti-
mates at nearly 15 million babies born at less than 37 weeks gestation
with an estimated 20% being born very preterm at less than 32 weeks
(Chang et al., 2013). Very preterm-born children delivered at
24–32 weeks of gestation are at significantly high risk for developmen-
tal delays with 4–19% of them developing cerebral palsy (Moster et al.,
2008; Saigal and Doyle, 2008), and 30%–60% exhibiting cognitive
impairments, poor executive function and working memory, learning
disabilities and motor dysfunction (Aarnoudse-Moens et al., 2009;
Holsti et al., 2002; Mulder et al., 2010; Taylor et al., 2004; Vohr et al.,
2003). This evolving constellation of motor and cognitive impairments
recognized in preterm-born children is consistent with impaired cere-
bral growth impacting gray and white matter (Back and Miller, 2014;
Chau et al., 2013). Given the increasing recognition of widespread
brain dysmaturation in preterm neonates, there is an urgent need to
quantify the growth of specific brain structures from early-in-life
(Back and Miller, 2014).

Slower than expected brain growth, as detected by magnetic reso-
nance imaging (MRI), is observed in very preterm-born children into
the adolescent period (Mathur et al., 2009). In particular, the hippocam-
pus, which is central to the developmental of learning andmemory, has
consistently been shown to be smaller in preterm-born children relative
to term born controls (Gimenez et al., 2008; Nosarti et al., 2002;
Thompson et al., 2008; Cheong et al., 2013; de Kieviet et al., 2012).
This relative decrease in the rate of hippocampal development in chil-
dren born very preterm has been associated with impaired cognition
and working memory at 2 years of age (Thompson et al., 2008;
Beauchamp et al., 2008) and school-age (Aarnoudse-Moens et al.,
2009, 2012; Ford et al., 2011; Rogers et al., 2012). As the growth spurt
of the hippocampus starts in the perinatal period (Insausti et al.,
2010), it is of great importance to understand the hippocampal growth
and development in very preterm neonates especially from early-in-life
to term-equivalent age.

Accurate segmentation of brain structures is the key to successful
volumetric analysis of hippocampal development, whichmay be of par-
ticular clinical significance in predicting development outcomes

(Peterson et al., 2000; Choe et al., 2013). Automatic segmentation of
neonatal brain images faces several challenges. Tissue contrast on T1-
or T2-weighted images, an image property that many algorithms rely
upon for automated segmentation, is the inverse of what is typically ob-
served in infants and adults (Fig. 1). In addition, the brains of preterm
neonates are at a much earlier stage in the gyrification process than
are full-termneonates (Fig. 1). A surge in synapse formation and activity
occurs at the third trimester, during which the volumes of cerebral cor-
tical gray and myelinated white matter increase about 4- to 5-fold
(Limperopoulos et al., 2010). Due to many of these factors, quantitative
volumetric and/or morphometric assessment of the hippocampus for
preterm infants have only been performed at term-equivalent age or
later, primarily using manual segmentation (Beauchamp et al., 2008;
Gousias et al., 2012; Lodygensky et al., 2005, 2008; Peterson et al.,
2000; Rogers et al., 2012; Thompson et al., 2008, 2009, 2013, 2014).

To date, there are several automatic brain tissue classification tech-
niques developed for neonates (Anbeek et al., 2013; Cardoso et al.,
2013; Gui et al., 2012; Prastawa et al., 2005; Shi et al., 2011; Wang
et al., 2014; Weisenfeld and Warfield, 2009; Xue et al., 2007; Yu et al.,
2010). However only a limited number of algorithms have been devel-
oped to achieve detailed delineation of specific brain structures, such as
the corpus callosum, basal ganglia, thalamus, hippocampus and amyg-
dala. Nishida et al. developed a semi-automated segmentation method,
whichwas capable of segmenting a brain into 30 brain regions (Nishida
et al., 2006). They validated their results in 12 neonates aged
31.1–42.6 weeks using visual inspection rather than by comparison to
gold-standard manual segmentations. Gousias and colleagues com-
pared the use of multi-atlas and model-based segmentation (based on
a maximum-probability representation) on the MR images of 5 term
and 15 preterm infants scanned at term (Gousias et al., 2013) using
label-based encephalic ROI templates (ALBERTs) of 50 manually seg-
mented anatomical brain regions as inputs (Gousias et al., 2012).
Makropoulos and colleagues extended this work and that by Xue et al.
(2007) by implementing a multi-structure Expectation-maximization
(EM) based segmentation technique for neonatal brain parcellation
(Makropoulos et al., 2014) using both the subject-specific tissue classi-
fication information with the nonlinearly transformed labels of the
ALBERTs.

Fig. 1.Axial images from T1-weightedMR of the same preterm-born child at different ages demonstrating rapid brain growth andmaturationwhich occurred from 29weeksGA to 2 years
of age. a. 29 weeks gestational age (GA); b. 40 weeks GA; c. 2 years. The white and gray matter contrast on images acquired at 29 and 40 weeks of GA is the inverse of that on the 2 year
image.
Courtesy of Dr. Margot Taylor

177T. Guo et al. / NeuroImage: Clinical 9 (2015) 176–193

http://creativecommons.org/licenses/by-nc-nd/4.0/


Although manual labeling of brain structures by trained experts is
generally considered the gold standard (Konrad et al., 2009), this pro-
cess is labor-intensive, time-consuming, and highly subjective in ambig-
uous regions. In contrast, automatic segmentation methods are more
objective, consistent and efficient especially for studying larger sample
sizes (Morey et al., 2009). Most semi-automatic and automatic algo-
rithms that have been published were in an effort to segment the
adult hippocampus (Akhondi-Asl et al., 2011; Chupin et al., 2009a;
Chupin et al., 2009b; Collins and Pruessner, 2010; Coupe et al., 2011;
Csernansky et al., 1998; Fischl et al., 2002; Gao et al., 2012; Haller
et al., 1997; Hao et al., 2014; Heckemann et al., 2006; Heckemann
et al., 2010; Hu et al., 2011; Jorge Cardoso et al., 2013; Khan, 2011;
Lötjönen et al., 2010; Pipitone et al., 2014; Shen and Davatzikos, 2002;
Shen et al., 2002; Tong et al., 2013; Van Leemput et al., 2009; Wu
et al., 2014; Yushkevich et al., 2010). Algorithms based on deformable
models usually require prior knowledge of the geometry and statistical
shape information of the interested structure, manually identified land-
marks, and/or probabilistic atlases to initialize and guide the segmenta-
tion (Akhondi-Asl et al., 2011; Chupin et al., 2009a; Chupin et al., 2009b;
Gao et al., 2012; Hu et al., 2011; Shen et al., 2002; Shen and Davatzikos,
2002). Classical model-based segmentation approaches employ
manually labeled single brain atlas to delineate the hippocampus by
propagating the atlas labels to target brain images using nonlinear
registration (Haller et al., 1997; Csernansky et al., 1998). To overcome
the inherent limitations of the model-based segmentation and improve
segmentation accuracy, methods based onmultiple atlases and label fu-
sion techniques have been developed andwidely adopted in hippocam-
pal volumetric studies (Chakravarty et al., 2013; Collins and Pruessner,
2010; Coupe et al., 2011; Fischl et al., 2002; Hao et al., 2014;
Heckemann et al., 2006; Heckemann et al., 2010; Jorge Cardoso et al.,
2013; Khan et al., 2011; Lötjönen et al., 2010; Pipitone et al., 2014;
Tong et al., 2013;Wu et al., 2014; Yushkevich et al., 2010). Furthermore,
various atlas selection (Aljabar et al., 2009; Collins and Pruessner, 2010;
Heckemann et al., 2006; Tong et al., 2013; Wolz et al., 2010) and label
fusion (Coupe et al., 2011; Hao et al., 2014; Jorge Cardoso et al., 2013;
Khan et al., 2011; Warfield et al., 2004; Wu et al., 2014) strategies
have been explored to optimize the multi-atlas based segmentations.

The present study focuses on the development and validation of an
automatic segmentation protocol to delineate the hippocampi of
preterm-born neonates on their brain MRIs acquired at not only term-
equivalent age but also early-in-life, in the weeks after birth when clin-
ically stable. This automatic segmentation pipeline is based on the
MAGeT-Brain algorithm (Chakravarty et al., 2013; Pipitone et al.,
2014), which requires only a small number of input atlases. This pipe-
line is capable of minimizing the registration and resampling errors by
propagating the labels to a template library that includes a subset or
all of the input subject images. Neither manual nor automatic hippo-
campal segmentations have been achieved on brain images of preterm
neonates as early as 27 weeks of post-menstrual age. Here, we present
novel work presenting the accurate segmentation of the neonatal
hippocampus for very preterm infants.

We first describe the protocol for manually segmenting the
hippocampi of preterm neonates and present the manual hippocampal
segmentation results. Then we introduce the MAGeT-Brain algorithm
(Chakravarty et al., 2013; Pipitone et al., 2014), and perform a thorough
multi-fold Monte Carlo cross-validation (MCCV) to evaluate the
hippocampal segmentation accuracy of our proposed technique with
187 different parameter settings (a total of 164,560 segmentation data
points were evaluated). We then apply this automatic segmentation
pipeline using the optimal parameter setting to delineate the
hippocampi on 168 early-in-life and 154 term-equivalent images of
197 preterm neonates to obtain the hippocampal volume data at these
two time points. Given that hippocampal vulnerability is recognized in
preterm neonates scanned at term-age or later, we examine whether
earlier gestational age at birth predicted a greater impairment in hippo-
campal growth.

2. Materials

2.1. Study population

The University of British Columbia Clinical Research Ethics Board
reviewed and approved the study. Parental informed consent was
obtained for the data acquisition of each participating patient.

Enrolled as part of a longitudinal study on brain development in pre-
termneonates betweenApril 2006 and September 2010, a total number
of 197 very preterm neonates (97 boys) born between 24 to 32 weeks
gestation age, without antenatal infections, congenital malformation
or syndrome, or ultrasound evidence of a large parenchymal hemor-
rhagic infarction greater than 2 cm at BC Women3s Hospital, Canada
were included in this study (Chau et al., 2013). The mean gestational
age of all the preterm neonates was 28.01 weeks with a standard
deviation of 2.2.

2.2. Magnetic resonance imaging

The anatomical images of neonates were acquiredwith a specialized
single-channel neonatal head coil (Advanced Imaging Research,
Cleveland, OH) on a Siemens 1.5 T Avanto scanner (Erlangen,
Germany) at two time points, once shortly after birth when clinically
stable and again at term-equivalent age. An MR-compatible incubator
(Lammers Medical Technology, Luebeck, Germany) was employed to
accommodate the infants who were not sedated for the scan. Sequence
parameters for the 3D volumetric T1-weighted images were: repetition
time (TR) 36 ms; echo time (TE) 9.2 ms; flip angle 30° and voxel size
1 mm × 1.04 mm × 1.04 mm for both sagittal and coronal acquisitions.
The 7 sagittal T1-weighted imageswere pre-processed to be in the same
orientation of the 315 coronal acquisitions using MINC image process-
ing tools (http://www.bic.mni.mcgill.ca/ServicesSoftware/HomePage).

All images were reviewed and rated by an experienced neuroradiol-
ogist (K.J.P.), blinded to the neonate3s medical history, for the identifica-
tion of brain injury severity. All images were scored for white matter
injury (WMI) based on a 3-point scale (none = 0, minimal = 1, and
moderate–severe = 2–3 combined), which was demonstrated to be
predictive of adverse neurodevelopmental outcome (Chau et al.,
2013). Areas exhibiting foci of abnormal T1 signal hyperintensity with
no marked T2 signal hypointensity, or low-intensity T1 foci were con-
sidered for WMI scoring. K.J.P also rated intraventricular hemorrhage
(IVH) on these images using Papile3s system (none = 0, mild = 1–2,
moderate–severe = 3–4) (Papile et al., 1978).

3. Manual segmentation of the hippocampus

Blinded with respect to gestational age at birth and functional out-
come measures, an expert (J.L.W.) in manual segmentation of the
hippocampus delineated the left and right hippocampi on both the
early-in-life and term-equivalent images of 22 randomly selected neo-
nates (44 images in total). The 22 neonates (7 boys), were born at a
mean gestational age of 27.7 weeks (SD 1.9), and scanned early-in-life
at 32.1 weeks (SD 1.9) and again at term-equivalent age at 40.4 weeks
(SD 2.1). Manual segmentations were considered the gold standard
for volumetric assessment and were employed as the atlases in
conducting automatic hippocampal segmentation with the MAGeT-
Brain method (see Section 5: Experiments).

Data were visualized and segmented using the Display software
package (part of the MINC image processing toolbox). Display provides
simultaneous coronal, sagittal, and axial views of the brain and can cre-
ate a 3D surface of a structure. The tricubic interpolant option was used
for image visualization purposes as we found that a more accurate and
consistent segregation of the hippocampus from the surrounding
structures within the medial temporal lobe was achievable under
these conditions. The images were inspected one final time with the
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interpolant removed to ensure that voxels suffering frompartial volume
effects were not erroneously considered within the hippocampus seg-
mentation. It should be noted that the images were not re-oriented
and the segmentations were performed in the native space and on the
data in its native format.

3.1. Manual segmentation protocols

A 3-step segmentation protocol (Fig. 2) was applied to each of the
early-in-life and term images. This protocol adapts the histological
definitions of Duvernoy et al. (2005), as well as existing whole hippo-
campal segmentation protocols for MR images (Boccardi et al., 2015;
Pruessner et al., 2000; Winterburn et al., 2013) to the preterm infant
brain. The manual segmentation protocol below is the first that has
been specifically described to accommodate the unique and potentially
variable neuroanatomy in preterm infants.

3.1.1. Step 1: initial estimation of the hippocampal boundaries using the
coronal view (Fig. 2)

The hippocampus was present in approximately 25 coronal slices,
extending from the amygdala in the anterior extremity to the fimbria
in the posterior extremity. Segmentations were based on the intensity
differences between the white matter of the temporal lobe (low inten-
sity) and the graymatter of the hippocampus (high intensity). Given the
paucity of myelin in the neonatal brain, this is opposite to what is
usually seen on regular T1-weighted MRI of children and adults. Along
with the free water content decreases of brain tissues and the
myelination of white matter during the first several postnatal months,
the intensities ofwhitematter and graymatter on T1weighted neonatal
MR images gradually alter and invert to become similar to those on

children and adult images. Representative segmentations for each coro-
nal slice of an example subject are shown in Fig. 3 and are meant to act
as a guide for other groups interested in replicating our protocol. The
lateral border throughout can be approximated from the inferior horn
of the lateral ventricle (Fig. 3, i) or the lateral ventricle (Fig. 3, ii). The
medial border is defined by the location where the subiculum of the
hippocampus meets the ambient cistern (Fig. 3, iii). Voxels at the
outer edges of the hippocampal structure may suffer from partial
volume effects. This is particularly true for the alveus and fimbria,
white matter structures that lie on the superior edge of the hippocam-
pus. Voxels that appeared to be composed of mixed structures were
assigned a hippocampus label only if they were perceived to contain
more hippocampus than other tissue classes (according to the qualita-
tive judgment of the rater). The hippocampal head was often difficult
to distinguish from the surrounding amygdala in the coronal view. In
such cases, the head was left unsegmented and was defined later in
the sagittal view, where its boundaries were much less ambiguous.

3.1.2. Step 2: refinement of segmentation using the sagittal view (Fig. 2)
The initial segmentations completed in the coronal view were veri-

fied in the sagittal view, and any incorrectly labeled voxelswere revised.
Any previously unlabeled voxels in and around the hippocampal region
were reconsidered and given appropriate labels in the sagittal view. The
sagittal view was also used to segment the hippocampal head if its
segmentation was impossible to complete in the coronal view.

3.1.3. Step 3: inspection of 3D surface (Fig. 2)
The segmented hippocampus was represented as a 3D surface in

Display using the marching cubes algorithm (Lorensen and Cline,
1987). The surface was adopted to identify abnormal hippocampal

Fig. 2. 3-Step manual segmentation protocol. The estimation of the hippocampal boundaries was initially performed using the coronal view and then refined using the sagittal view. 3D
surface model of the segmented hippocampus was constructed for the final inspection of segmentation.
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shape. It is expected that the surface of the hippocampus is relatively
smooth throughout, so any areas that protrude excessively were
trimmed. Any regions that were considered morphologically
incontiguous were inspected at the homologous location in the tri-
planar view of the segmentation. These voxels were further verified in
the segmentation based on the actual intensity and contrast character-
istics of the image.

3.2. Protocol reliability testing

Four early-in-life and four term image were randomly selected and
re-segmented to assess the reliability of our 3-step manual segmenta-
tion protocol. Re-segmentations of both the left and right hippocampi
in these imageswere performed at least 6months after the original seg-
mentations to ensure that rater memory was not a confounding factor.
In essence, this type of test–retest metric can be used as an upper
bound for the accuracy of the hippocampus segmentations. Protocol re-
liability was measured using the Dice3s Kappa metric, which evaluates
the spatial and volumetric overlap of the original and re-segmented
label volumes. The Dice3s Kappa can be represented by the following
equation:

k ¼ 2A∩B=Aþ B

where k is the Dice3s Kappa, A and B are the number of voxels belonging
to a specific segmentation, and a perfect overlap of labels A and B has
k = 1.

3.3. Results: manual segmentation of the hippocampus

The volumetric results for both the early-in-life and term images of
these 22 subjects are shown in Table 1. Both the left and the right

hippocampi on the term images are significantly larger than those on
the early-in-life images (p b 0.001).

Table 2 lists the results of the intra-rater reliability of the 3-step
manual segmentation protocol measuredwith the Dice3s Kappa. The re-
sults (N0.81 based on the range and N0.85 based on the mean) indicate
that high stability and intra-rater reliability can be achieved using this
manual segmentation protocol. Higher intra-rater reliability was
obtained in segmenting the hippocampus on the early-in-life images
and the manual rater3s hippocampal tracing accuracy was consistent
overtime.

4. MAGeT-Brain segmentation

Multiple Automatically Generated Templates (MAGeT) Brain
(Chakravarty et al., 2013) is the automatic image segmentation pipeline
employed in this work. Unlike the conventional multi-atlas segmenta-
tion technique, MAGeT-Brain requires only a few manually segmented
images as the atlases. This approach creates an intermediate dataset,
which is called the template library to serve the same role as multiple
atlases in segmentation, as would be used in a more traditional multi-
atlas segmentation routine.

MAGeT-Brain first selects a subset or the entire set of images from
the targeted subject images and uses them as the templates images. It
propagates each of the labeled atlases to all the template images to gen-
erate the template library. The template image selection criteria can be
modified to best represent subject populations with cases and controls
or satisfy themeasurement of certain neuroanatomical features accord-
ing to specific study objectives. The purpose of this intermediate stage is
to use the variability of the population under study to improve the final
segmentation output. Then, each subject image is non-linearly regis-
tered to all the template images with the automatic normalization

Fig. 3. Representative segmentations of the hippocampus for each coronal slice of an example subject. i. The lateral border defined by the inferior horn of the lateral ventricle; ii. the lateral
ventricle and iii. the location where the subiculum of the hippocampus meets the ambient cistern defines the medial border.

Table 1
The manually segmented hippocampal volumes of the 22 subjects.

22 subjects Left Right Average

Early-in-life (mm3) Mean: 719.1 ± 158.0
Range: 518.7–1220.7

Mean: 722.4 ± 147.4
Range: 455.9–1023.2

Mean: 720.7 ± 146.1
494.7–1122.0

Term (mm3) Mean: 1077.5 ± 160.2
Range: 769.3–1449.7

Mean: 1085.3 ± 137.8
Range: 827.9–1354.0

Mean: 1081.4 ± 141.9
820.3–1407.3
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tools (ANTs) (Avants et al., 2008; Avants et al., 2011). Through this pro-
cess, we can automatically grow the number of candidate segmenta-
tions to as many as the number of the atlases times that of the
templates for each subject. To limit errors due to resampling, nonlinear
registration, or irreconcilable differences in the neuroanatomy, the
multiple labels acquired from the previous step for each subject are
fused using a voxel voting procedure to achieve the final labeling of
each subject. Majority voting was adopted in label fusion, where the
most popularly voted label at each voxel determines the final labeling
or segmentation (Collins and Pruessner, 2010), because it carries the
advantage of computational efficiency.

More sophisticated atlas selection (Aljabar et al., 2009; Collins and
Pruessner, 2010; Heckemann et al., 2006; Heckemann et al., 2010;
Tong et al., 2013; Wolz et al., 2010) and label fusion methods (Coupe
et al., 2011; Hao et al., 2014; Jorge Cardoso et al., 2013; Khan et al.,
2011; Wang et al., 2011; Warfield et al., 2004; Wu et al., 2014;
Yushkevich et al., 2010) that can be used in automatic segmentations
are available. However, we did not see significant benefit of using
cross-correlationweighted and normalizedmutual informationweight-
ed voting over the simple majority voting fusion method in improving
the segmentation accuracy of MAGeT-Brain from our previously pub-
lished studies (Pipitone et al., 2014; Park et al., 2014). Previous studies
also demonstrated that when given the same number of atlases,
MAGeT-Brain is more accurate than multi-atlas segmentation and is
more reliable than the probabilistic atlas approach (Diedrichsen et al.,
2009).

Recent studies have demonstrated thatMAGeTBrain can provide ac-
curate segmentations of subcortical structures (striatum, thalamus, and
pallidum) (Chakravarty et al., 2013; Raznahan et al., 2014; Shaw et al.,
2014), the adult hippocampus and its subfields (Pipitone et al., 2014),
the cerebellum and its lobules (Park et al., 2014), and the adolescent pi-
tuitary gland (Wong et al., 2014).

5. Experiments

Brain structures experience significant growth and myelination
in the perinatal period. Rapid development and maturation of fiber
tracts and individual brain regions that occur during this time result
in striking morphological differences that are clearly demonstrated
on neonatal brain MR images acquired at preterm (Fig. 1a) and
term-equivalent age (Fig. 1b). To account for the morphological var-
iability of brains at different ages, we assessed the reliability and ac-
curacy of MAGeT-Brain in hippocampal segmentation from
volumetric T1-weighted scans of preterm-born neonates using the
following experiments.

Experiment 1 thoroughly evaluates the hippocampal segmentation
accuracy of MAGeT-Brain on preterm-born neonates at early-in-life
and term age over different parameter settings.

Experiment 2 studies the hippocampal volume and growth from
early-in-life to term-equivalent age of preterm neonates using
MAGeT-Brain with the optimal parameter setting obtained from Exper-
iment 1.

Experiment 3 investigates if there is any statistically significant asso-
ciation of the premature birth with the average hippocampal volumes
from early-in-life to term-equivalent age.

5.1. Experiment 1: Monte Carlo cross-validation of MAGeT-brain hippo-
campal segmentation

The optimal parameter setting of MAGeT-Brain for the hippocampal
segmentations of preterm-born infants was validated with three trials
of comprehensive 10-fold Monte Carlo cross-validation (MCCV) (Shao,
1993) on the early-in-life group, the term group, and the mixed group
(with both early-in-life and term images). In these three MCCV studies,
the manually segmented hippocampi on the 22 early-in-life and 22
term images were considered the gold standard.

5.1.1. Experiment 1: methods
In the first MCCV study on the 22 early-in-life images, MAGeT-Brain

computed the hippocampal segmentations of these images automati-
cally with randomly selected 5–15 (11 different numbers of) input
atlases and 5–21 (17 different numbers of) templates from the atlas
and template libraries. The input atlas library contained the manual
segmentations of the 21 early-in-life images and the template library in-
cluded their brain images. The subject under study was excluded from
both the atlas and template libraries to ensure completely unbiased
segmentation results. Each of the 22 images was segmented with
11 × 17 = 187 different parameter settings 10 times using MAGeT-
Brain, and a total of 10 × 22 × 11 × 17 = 41,140 validation data were
generated. The automatic segmentations were compared to the gold
standard.

The second MCCV for the term group was conducted using a proto-
col similar to that described above to assess the performance ofMAGeT-
Brain in segmenting the hippocampi on term images with atlas library
size varying from 5 to 15 images, and template library size varying
from 5 to 21 images excluding the subject under study. The evaluation
was based on a total of 41,140 term segmentation data that were pro-
duced with 187 parameters settings on the 22 term images over 10
folds.

The third MCCV was carried out with expanded atlas and template
libraries, which were composed of all 44 hippocampal atlases and 44
images (22 early-in-life and 22 term). MAGeT-Brain pipeline was ap-
plied to segment the hippocampi of these 44 images with parameter
settings of 5–15 input atlases and 5–21 templates excluding the subject
under study. We obtained a total of 10 × 44 × 17 × 11 = 82,280
segmentations in this study, and analyzed the validation results using
the same method as in the first and second MCCV studies.

For each of these three studies, Dice3s Kappa of each segmentation
with every parameter setting in each fold was calculated. The Euclidean
distance between the centroid of each MAGeT-Brain segmented hippo-
campus and that of its manual counterpart was also derived. Ideally the
difference between the automatic segmentation and the gold standard
manual segmentation should be minimal, i.e. the Kappa value should be
close to 1 and the Euclidean distance close to 0. The segmentation accura-
cy for each of the 187 parameter settingswas evaluated using the average
of the 22 (studies 1 and 2) or 44 (study 3) segmentations of the 10 folds.
Based on these evaluation results, the optimal parameter setting of the
atlas and the template libraries was determined.

The volume-related fixed and proportional biases of MAGeT-Brain
segmentation with the optimal parameter setting across the range of
hippocampal sizes were evaluated using the Bland–Altman plots
(Bland and Altman, 1986) for all three studies. Eachmanually segment-
ed hippocampal volume was compared with the mean volume seg-
mented using MAGeT-Brain with all 187 settings over 10 folds.
Moreover, the level of agreement of MAGeT-Brain segmented hippo-
campi with the manual segmentations in terms of centroid location
was also analyzed using the Bland-Altman plots.

5.1.2. Experiment 1: results
A high degree of overlap is demonstrated between theMAGeT-Brain

segmented hippocampal volumes and the gold standard manual

Table 2
TheDice3s Kappa for the left and right hippocampi of 4 early-in-life and 4 term images that
were manually segmented by J.L.W. in two sessions.

Dice3s Kappa: Mean (range) Left Right

Early-in-life 0.91 (0.90–0.91) 0.89 (0.86–0.91)
Term 0.86 (0.83–0.87) 0.86 (0.82–0.89)
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segmentations. The maximum Kappa is obtained when using 15
atlases and 21 templates to segment the hippocampi on all three
groups. As illustrated in Fig. 4, the segmentation accuracy of
MAGeT-Brain improves along with the increased number of atlases
and templates, however the improvement diminishes when there
are more than 11 images in the atlas library and 13 images in the
template library. Although we included both even and odd numbers
of images in the atlases and templates libraries in the three MCCV
studies, we have shown the results obtained with the odd number
of inputs in Figs 4 and 5 for clearer display.

We find that the selection of input atlases and templates affects
MAGeT-Brain segmentation accuracy. When images that are acquired
at similar age are selected as atlases and templates, MAGeT-Brain seg-
mentations have better concordance with the gold-standard manual
segmentations (Fig. 4), while usingmixed early-in-life and term atlases
and templates results in less accurate segmentations, due to the exis-
tence of vast morphological variability on brain images scanned at
these two time points (Fig. 1a, b).

The Euclidean distances between centroids of manually segmented
hippocampi and those of MAGeT-Brain segmentations reflect a high de-
gree of agreement in terms of locations (Fig. 5). Mean Euclidean dis-
tance decreases with the increased number of atlases, however the
size of the template library does not have a significant effect on the
Euclidean distance between the centroids of manual and MAGeT-Brain
segmentations.

When we performedMAGeT-Brain segmentations using atlases and
templates selected from the 44 mixed images (22 early-in-life and 22
term), two of the 44 images had some failed hippocampal segmenta-
tions (Kappa b 0.6) due to the severe image distortion around the
hippocampal areas on these two images and the significantmorpholog-
ical difference between these two images and their randomly selected
input atlases and templates. We noticed that 37.5% of a total of 3740
segmentation data for these two images had failed in the mixed group
study when the MR-post-menstrual age (MR-PMA) of the input atlases
and templates was significantly different from that of these two images.
The number of failed segmentations accounts for 1.7% of all the 82,280

Fig. 4.Mean Dice3s Kappa between the gold standardmanual segmentations andMAGeT-Brain hippocampal segmentationswith 187 different parameter settings (5–15 atlases and 5–21
templates) over 10 folds for 22 early-in-life images (top), 22 term images (middle), and 42 mixed images (bottom). Error bars indicate standard error.
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segmentation data in this group. Therefore, the segmentation results of
these two imageswere excluded from themixed group study. This indi-
cates that MR-PMA appropriate atlases and templates should be used to
avoid segmentation failure and achieve accurate MAGeT-Brain hippo-
campal segmentations.

The Bland–Altman plots illustrate the levels of fixed and proportion-
al bias observed in MAGeT-Brain segmentations in comparison with
manual segmentation hippocampal volumes (Fig. 6). MAGeT-Brain
appears to slightly under-estimate larger hippocampi and over-
estimate smaller hippocampi, and shows a conservative fixed bias
when compared to the manual segmentations. In addition, a fixed
underestimation of ~10% of the structure volume is also observed.

Fig. 7 shows the hippocampal centroid location related biases and
thoroughly reveals the error distribution of the centroids of MAGeT-
Brain segmented hippocampi in x, y, and z directions. The mean differ-
ences in x direction between the centroids of the manually segmented
hippocampi and those of the MAGeT-Brain segmentations are all posi-
tive on the left side and negative on the right side for the early-in-life,
term, and mixed groups, indicating that in general the location of
MAGeT-Brain segmented hippocampi in x direction tends to be slightly

more lateral than the manual segmentations on both left and right
sides.MAGeT-Brain segmentations aremoremedial formore laterally lo-
cated hippocampi, andmore lateral for thosemoremedially located ones.
In the y direction,MAGeT-Brain segmented hippocampi are locatedmore
posteriorly than themanual segmentations for the early-in-life group and
more anteriorly for the term andmixed groups. In the z direction, for the
more superiorly located hippocampi, MAGeT-Brain is more likely to seg-
ment them more inferiorly on both sides for all three groups. The mean
difference in the z direction is also the smallest in all three directions.
Since the majority of the images were acquired coronally, the sagittal ac-
quisitions in all three groups (2 early-in-life, 2 term, 4 mixed) were ex-
cluded in the centroid location study to maintain consistent coordinates.

5.2. Experiment 2: hippocampal segmentation on early-in-life and term
images

In this experiment, we applied theMAGeT-Brain pipeline to auto-
matically delineate the hippocampi on 168 early-in-life images
(mean post-menstrual age [PMA] 32 weeks) and 154 term-

Fig. 5.Mean Euclideandistance between centroids ofmanually segmentedhippocampi and those ofMAGeT-Brain segmentationswith 187 parameter settings over 10 folds for 22 early-in-
life images (top), 22 term images (middle), and 42 mixed images (bottom). Error bars indicate standard error.
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equivalent images (mean PMA 40 weeks) acquired at BC Women3s
Hospital.

5.2.1. Experiment 2: methods
First, employing 15 of the 22 manually segmented hippocampi

obtained on early-in-life images as input atlases and 21 randomly se-
lected early-in-life images as templates, we calculated volumes of
the left and right hippocampi on each individual image and obtained
the mean of the entire early-in-life group consisting of 168 images
with MAGeT-Brain. We then applied a similar automatic segmenta-
tion protocol to label hippocampi on the 154 term-equivalent im-
ages. The input atlases in the term study were replaced by 15
manual hippocampal segmentations of term images, and the tem-
plates were 21 randomly selected term images. Calculation and anal-
ysis of the MAGeT-Brain segmented hippocampal volumes were
conducted for each image and the whole group without the interfer-
ence of their own manual segmentations.

A total of 125 subjects in our study cohort had both early-in-life and
term images. We calculated the hippocampal growth rates within this

time window for these 125 subjects by dividing the volume difference
by the time interval between the two scans.

Growth Rate ¼ Sterm−Searly
Δtterm−early

where Sterm and Searly are the automatic hippocampal segmentations at
term and early-in-life for each subject.

5.2.2. Hippocampal volumes and growth rates
Table 3 summarizes the mean volumes of the left and right hippo-

campi that were automatically delineated using theMAGeT-Brain pipe-
line from the 168 early-in-life and 154 term-equivalent images, as well
as the hippocampal growth rates of 125 subjects between two scans.
There was one subject who had negative hippocampal growth on the
right side from early-in-life to term.We noticed that this infant had ex-
tensive brain injury, including white matter injury, intraventricular
hemorrhage, and ventriculomegaly, which may have significantly
impaired hippocampal development.

Fig. 6. Bland–Altman plots of MAGeT-Brain vs. manually segmented hippocampal volumes for 22 early-in-life images (top), 22 term images (middle), and 42mixed images (bottom). The
overall mean difference in volume and limits of agreement (±1.96SD) are shown by dashed horizontal lines. Linear fit lines are shown for each group.
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Figs. 8 and 9 display the visual analysis results of the manual and
MAGeT-Brain hippocampal segmentations on the sagittal view in the
22 early-in-life and 22 term images. Excellent agreement between the
hippocampi segmented manually and those by MAGeT-Brain can be
found in these two figures. Discrepancy is only in peripheral areas.

5.3. Experiment 3: association of hippocampal volume with prematurity

5.3.1. Experiment 3: methods
Wecalculated the average volume of the left and right hippocampi for

each of the 125 neonates who had both early-in-life and term images

Fig. 7. Bland–Altman plots of the centroid location ofMAGeT-Brain vs. manually segmented hippocampi (left & right, x, y, z) in the early-in-life (20 images), term (20 images), andmixed
(38 images) groups. The overall mean difference in each coordinate direction and limits of agreement (±1.96SD) are shown by dashed horizontal lines. Linear fit lines are shown for each
group.

Table 3
The automatically segmented hippocampal volumes on 168 early-in-life images, 154 term images, and the hippocampal growth rates of 125 subjects who had both early-in-life and term
images.

MAGeT-Brain Left Right Average

Volume: 168 subjects at early-in-life (mm3) Mean: 595.6 ± 121.2
Range: 358.1–1042.8

Mean: 648 ± 130
Range: 371.1–1217.4

Mean: 621.8 ± 122.4
Range: 364.6–1130.1

Volume: 154 subjects at term age (mm3) Mean: 925.2 ± 151.4
Range: 551.2–1297.7

Mean: 992.4 ± 156.3
Range: 595.7–1282.6

Mean: 958.8 ± 150.6
Range: 582.7–1273.3

Growth rate: 125 subjects (mm3/week) Mean: 38.3 ± 11.7
Range: 1.1–84.9

Mean: 40.5 ± 12.9
Range: −2.7–75.8

Mean: 39.4 ± 11.5
Range: 0.6–80.3

185T. Guo et al. / NeuroImage: Clinical 9 (2015) 176–193



from their MAGeT-Brain segmentations. The effect of prematurity on the
volume of the hippocampi was assessed using linear regression analysis.
The average of the right and left hippocampal volumes at early-in-life and
those at term-equivalent age scans were used as the dependent variable
and GA at birth was used as the independent variable. The days of life
(DOL) at the time of the MRI scans was considered as a covariate in the
analysis. Statistical analyses were performed using Matlab (MATLAB
and Statistics Toolbox, The MathWorks, Inc., Natick, MA, United States).

5.3.2. Experiment 3: Results
Linear regression analysis to assess the impact of premature birth on

the volume of the hippocampi shows a positive significant effect (t =

17.9, df = 247, p b 0.001; Fig. 10). Results indicate that hippocampi
volume assessed at the time of early-in-life and term-equivalent age is
linearly associated with GA at birth, whereby smaller volumes are asso-
ciated with earlier birth (~24weeks) and the volumes are progressively
larger in infants born later (25–32 weeks).

6. Discussion and conclusions

This manuscript presents a segmentation methodology that can
effectively delineate the hippocampi of very preterm neonates (born
24–32 weeks GA) on both their early-in-life images (mean PMA
32 weeks) and term images (mean PMA 40 weeks). The three-step

Fig. 8. Comparison ofmanual hippocampal segmentationswithMAGeT-Brain-based hippocampal segmentations on the 22 early-in-life images of very preterm-born infants. Red: hippo-
campal regions segmented eithermanually or byMAGeT-Brain; green: the common regions ofmanual andMAGeT-Brain segmentations.Magenta arrows point to areas over-estimated by
MAGeT-Brain; blue arrows point to areas under-estimated by MAGeT-Brain. Kappa values are at bottom right corners.
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manual segmentation protocol described in this manuscript is a novel
contribution that addresses the rules for the segmentation of hippocam-
pus in the rapidly changing neuroanatomy of preterm-born infants
from early-in-life to term-equivalent age. Particular care was taken to
be sure that the segmentation rules that were developed to delineate
the early-in-life images of very preterm neonates were also applicable
to the neuroanatomy of neonates at term-equivalent age in order to
maintain consistency amongst our neuroanatomical definitions. Given
the 6-month intra-rater reliability interval, we also demonstrate that
our manual segmentation protocol is consistent and easy to follow.
These hippocampal segmentations are thus reliable definitions that

are able to serve as the input atlases in our validation experiments of
the automatically generated segmentations.

Although the expert rater strictly followed the 3-step manual seg-
mentation protocol for both the early-in-life and term images, the
intra-rater reliability of manual hippocampal segmentation is slightly
lower for term images than that for early-in-life images. This could be
caused by the fact that at term-equivalent age a higher proportion of im-
agesmay suffer frommotion artifacts and the shape of the hippocampus
is muchmore convoluted. In this study the images were acquired with-
out sedation and the babies at term-equivalent age have developed bet-
termuscle control over their neck and canmove their headsmuchmore

Fig. 9. Comparison ofmanual hippocampal segmentationswithMAGeT-Brain-based hippocampal segmentations on the 22 term images of very preterm-born infants (sagittal view). Red:
hippocampal regions segmented either manually or by MAGeT-Brain; green: the common regions of manual and MAGeT-Brain segmentations. Magenta arrows point to areas over-esti-
mated by MAGeT-Brain; blue arrows point to areas under-estimated by MAGeT-Brain. Kappa values are at bottom right corners.
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than they could at early-in-life stage. Althoughwe took exceptional care
to pre-select MRIs that suffered frommotion artifacts, it is indeed possi-
ble that some images with visually less obvious motion artifacts were
included in this manuscript since the artifacts were undetected. Quanti-
fying the effects of movement in this neonatal population, much in the
same way that has been done in pediatric and adolescent populations
would be of exceptional use to the field (Satterthwaite et al., 2012;
Fair et al., 2012). Similarly, othermethods have been developed to auto-
matically detectMRI data suffering from largemotion artifacts (Gedamu
et al., 2008; Trampel et al., 2011), although it is unclear how well this
method would work in neonates. Firstly, the contrast profile of these
images varies greatly as a function of age. Therefore using a standard
set of regions of interest employed in Gedamu et al. (2008) and
Trampel et al. (2011) may not be feasible in this setting. The regions
of interest used to define the signal-to-noise ratio are exclusively
based on our knowledge of the contrast profile of the fully developed
children or the adult human brain. It is unlikely that measuring signal-
to-noise ratios using the same ROIs would work in this application.
Moreover, due to the changing size and intensity/contrast-profiles of
the brains, it is also unlikely that any pre-defined set of ROIs would
work well here and that a set of regions that can be dynamically gener-
ated are what is required. Generating a novel algorithm that is able to
automatically detect outliers due to excessive motion is of course of
great interest to the neonatal imaging community. The development
and validation of such an algorithm, are outside the scope of this
manuscript.

In addition, rapid brain growth and maturation occur from early-in-
life to term-equivalent age (Fig. 1a, b) and themore convoluted shape of
the hippocampus at term significantly increases the difficulty inmanual
segmentation. Moreover, it is possible that design choices that were
made for the manual segmentation protocol contributed to potential
confounders. For example, although the images were in the original
space during the segmentation process, a tricubic interpolant was
used for the purposes of visualization but was never applied directly
to the data that was used. As a result, the segmentations might be
skewed to include voxels suffering from partial-volume effects. None-
theless, the segmentations were verified without the effects of the
interpolant and once more using the surface-based representation of
the hippocampus. Therefore, our multi-stage manual segmentation
technique should buffer against these confounders.

The rigorous 10-fold Monte Carlo cross-validation (MCCV) conduct-
ed in Experiment 1 on the early-in-life and the term groups reveals that

the segmentation accuracy improves with the increased number of
atlases and templates. In our previous experiments in the segmentation
of the adult hippocampus in the context of Alzheimer3s disease and first
episode psychosis (Pipitone et al., 2014), the segmentation accuracy ap-
pears to plateau when the number of input atlases and templates ex-
ceeds 5 and 15 respectively. In the first and second validation studies,
when we employ early-in-life atlases and templates to segment early-
in-life images and term-equivalent atlases and templates to segment
term-equivalent images, we are able to obtain consistently reliable
and accurate segmentations. Whereas, in the third validation study,
we employ randomly mixed atlases and templates to segment target
images that are not age matched to the atlases and templates. The age
difference between the input atlases/templates and the target images
can be as far as 15 weeks. As we can see in Fig. 1, the size and shape of
the neonatal brains even for the same subject 11 weeks apart can be
dramatically different and the morphological differences can be too
large to be accommodated by any high performance registration or seg-
mentation algorithm. It should be noted that even though randomly se-
lected age-mismatched atlases and templates are used in this study,
MAGeT-Brain is still able to achieve accurate hippocampal segmenta-
tions in 98.3% of the 82,280 cases in this group and only 1.7% of the
MAGeT-Brain segmentations have Kappa values lower than 0.6 when
compared to the gold standard manual segmentations. Given these cir-
cumstances, it is reasonable to consider that MAGeT-Brain performs ro-
bustly to neuroanatomical variation that is present through the
developmental period. When we combine the input atlases acquired
at different post-menstrual ages, the segmentation accuracy (in
Kappa) is slightly decreased. These results suggest that age appropriate
atlases and templates are required to obtain better segmentation
accuracy. Given the rapid growth of the brain and the heterogeneous
morphology at these early points in the human life-span, it is encourag-
ing to note that the robust segmentations are still possible even if the
neuroanatomy in the atlas library is not homologous to the anatomy
of the subjects to be labeled.

As demonstrated by the Dice3s Kappa and Euclidean distance be-
tween the gold standard manual segmentations and the MAGeT-
Brain-based segmentations that were generated in Experiment 2, the
hippocampi on the early-in-life images and those on term-equivalent
images can be accurately delineated using MAGeT-Brain (Table 1A).
We evaluated the hippocampal segmentation accuracy of MAGeT-
Brain employing strictly defined MR-PMA appropriate atlases and tem-
plates in delineating the hippocampi on images scanned at similar MR-
PMA. However, no statistically significant enhancement was found for
images in either the early-preterm or the term group defined by their
MR-PMA (Table 1A). This further demonstrates that MAGeT-Brain
performs robustly in hippocampal segmentation with different
selections of atlases and templates. Accurate segmentation of the hippo-
campi allows us to evaluate whether younger birth GA is related to the
sizes of hippocampal volumes. The high segmentation accuracy can be
achieved by MAGeT-Brain in both early-in-life and term-equivalent
images, suggesting its applicability in studying the volumetric and
morphometric changes of hippocampus of preterm neonates.

Another quality metric that was used in this study was bias estima-
tion using the Bland–Altman plot. While metrics such as the Dice simi-
larity coefficient and the analysis of the centroids provide information
regarding the accuracy andprecision of thefinal segmentation, the anal-
ysis of the Bland–Altman plots provides more information regarding
any fixed or proportional biases that may exist within the hippocampal
segmentations. The plots of the volume demonstrate a slight biaswhere
larger hippocampi are under-estimated while smaller hippocampi are
over-estimated, regardless of the choice of the initial atlas library com-
position (see Fig. 6). This is consistentwith the proportional bias report-
ed in our previous work (Pipitone et al., 2014). However, these plots
also demonstrate a slight underestimation of the overall hippocampal
volume (~50–150 mm3). This may be due to the majority voting

Fig. 10. Impact of premature birth on hippocampal volume assessedwithin thefirst weeks
of life and at term-equivalent age in very preterm born neonates. Data represent the aver-
age left and right hippocampal volumes (mm3) acquired at early-in-life and those at term-
equivalent age for each neonate. Smaller hippocampal volume is associatedwith an earlier
GA at birth (T = 17.9, p b 0.0001, adjusting for days of life [DOL] at MRI).
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methodology used in the label fusion stage, which may be potentially
filtering toomany uncertain labels using a conservative threshold. In re-
cent work from our group (Bhagwat et al., 2015), we did evaluate
MAGeT Brain performance using STAPLE (Warfield et al., 2004) (an al-
gorithm commonly used for label-fusion), and surprisingly, found no
improvements in performance over majority vote. While this does not
explicitly suggest that the performance of MAGeT Brain would not be
improved through the inclusion of a more sophisticated label-fusion
technique, the exploration of the performance of this technique using
more state-of-the art label fusion methods (Coupe et al., 2011; Hao
et al., 2014; Jorge Cardoso et al., 2013; Khan et al., 2011; Wang et al.,
2011; Warfield et al., 2004; Wu et al., 2014; Yushkevich et al., 2010) is
necessary and is an area of active investigation. More work is required
to properly identify a label fusion method that improves the final seg-
mentations but that can fully account for the changing intensity and
contrast characteristics in the MRI data in this population through the
course of development and maturation.

There are multi-atlas segmentation techniques that employ sophis-
ticated atlas selection (Aljabar et al., 2009; Collins and Pruessner,
2010; Heckemann et al., 2006; Heckemann et al., 2010; Tong et al.,
2013; Wolz et al., 2010) and label fusion methods (Coupe et al., 2011;
Hao et al., 2014; Jorge Cardoso et al., 2013; Khan et al., 2011; Wang
et al., 2011; Warfield et al., 2004; Wu et al., 2014; Yushkevich et al.,
2010). It is indeed likely that employing such a strategy for the segmen-
tation of the neonatal brain could be beneficial. It should be noted that
in previous work, we did not see significant benefit of using cross-
correlation weighted and normalized mutual information weighted
voting over the simple majority voting fusion method in improving
the segmentation accuracy of MAGeT-Brain from our previously pub-
lished studies (Pipitone et al., 2014; Chakravarty et al., 2013). These
studies also demonstrate that when given the same number of atlases,
MAGeT-Brain is more accurate than multi-atlas segmentation and is
more reliable than the probabilistic atlas approach (Diedrichsen et al.,
2009). Further, in previous manuscripts (Pipitone et al., 2014) we also
validated hippocampal segmentations against commonly usedmethods
in the field, including: FreeSurfer (Fischl et al., 2002), FSL FIRST
(Patenaude et al., 2011), MAPER (Heckemann et al., 2006; Heckemann
et al., 2010), and SNT (Medtronic Surgical Navigation Technologies, Lou-
isville, CO, USA). In all cases we found that MAGeT Brain outperformed
many of these methods in terms of consistency and quality of segmen-
tation. Nonetheless, improving the label fusion stage is an active area of
research for improving this algorithm.

Although the average volume of the right hippocampus is only mar-
ginally larger than that of the left hippocampus for the 22manually seg-
mented subjects in Table 1, asymmetrical hippocampal volumes are
noted in the MAGeT-Brain segmentation results for the 168 early-in-
life images and the 154 term-equivalent images in Experiment 2 with
the right side being larger than the left side. We should note that we
did not observe these asymmetries in the originally manually segment-
ed data. This is likely to be a product of the differences in the sample
sizes analyzed. The finding of the hippocampal asymmetry (right
hippocampus N left hippocampus) in the term images of preterm-born
neonates is in concordance with what was reported in an earlier study
by Thompson et al. (2009). Hippocampal asymmetry was also observed
in children (Giedd et al., 1996; Pfluger et al., 1999; Utsunomiya et al.,
1999) and adults (Jack et al., 2000; Watson et al., 1992), however the
underlying mechanisms for this phenomenon still remain unknown.
To our knowledge, this is the earliest demonstration of hippocampal
asymmetry well prior to term in preterm neonates (mean MR-PMA:
32 weeks), in what would have been the third-trimester of gestation.
These data suggest that the hippocampal asymmetry previously de-
scribed at term-age and in older children and adults has its onset in
the 3rd trimester of gestation or earlier. Given the size of the sample an-
alyzed here, it is unlikely that this finding is artifactual. Nonetheless, it is
possible that it may be the product of some sort of systematic bias

causing data quality to be lower on the right side of the image (due to
field inhomogeneities or even noise).

We note that the absolute error was larger in the y direction
(anterior–posterior) than that in the other two directions when we cal-
culated the Euclidean distances between the centroids of the manually
and automatically segmented hippocampi (Table 2A). This was very
likely due to the fact that the longest section of the hippocampus runs
almost parallel to the y-axis. The error measured with the average
Euclidean distance in the term group was larger than that in the early-
in-life group, because of the brain growth and the hippocampal growth
from preterm to term ages. Although good agreement is found between
the MAGeT-Brain based segmentations and the gold standard manual
segmentations, the automatically segmented hippocampi obtained
with MAGeT-Brain tend to be smaller than the manually segmented
hippocampal volumes.

Contrary to what we expected, employing a pre-processing step
(N3) to correct the image intensity non-uniformity (Sled et al., 1998)
did not improve the hippocampal segmentation accuracy of MAGeT-
Brain for neither the early-in-life nor the term images. The hippocampal
volumes that were segmented from pre-processed images were at the
correct positions, but significantly smaller in size when they were com-
pared with the manual segmentations; these problems were persistent
regardless of our choice of parameter settings. We were surprised that
the benefits that were seen in previous studies for the adult brain
segmentations (Zheng et al., 2009) were not achieved in segmenting
the hippocampi on the images of preterm infants. Since the average
size of an infant brain is only one-third that of an adult brain (Ponce
de León et al., 2008), acquiring infant brain images requiresmuch small-
er field of view (FOV) than acquiring adult brain images, and the arti-
facts caused by magnetic field inhomogeneity may be less pronounced
for the neonatal brain images. As a result, N3 may over-correct the
non-uniformity on neonatal images thereby affecting our segmentation
results negatively, making this an important area for further
investigation.

High-resolution T2-weighted images usually require much longer
acquisition time than T1-weighted images in the same resolution. Due
to the limited available scanner time, it is often not feasible to acquire
high-resolution 3D T2-weighted images. T2-weighted images have usu-
ally been acquired with high in-plane resolution but large inter-slide
distance. This kind of T2weighted images alone is not suitable for direct
volumetric analysis of small brain structures, such as the hippocampus.
While we have not assessed this directly here, it is possible that post-
processing techniques such as simple addition of the T2 and PD images
can improve contrast to noise (CNR) and facilitate the definition of hip-
pocampal boundaries on images acquired at term-equivalent age
(Thompson et al., 2012). The manual segmentation results obtained
by two independent raters on the combined T2 and PD images were
better than those only on T2 images. Utilizing multi-spectral data may
provide more detailed information on the hippocampal borders and
allow more accurate delineation of this convoluted structure. Further-
more, MR image quality, and subsequent segmentation quality, can be
improvedwith better accessibility to higher field strengthMR scanners,
custom-made multi-channel coils (Panigrahy et al., 2012; Reiss-
Zimmermann et al., 2013), and more advanced acquisition techniques
(Wargo et al., 2013).

Only a few semi-automatic and automatic segmentation ap-
proaches are available to delineate the hippocampus on neonatal
brain images of preterm infants (Nishida et al., 2006; Gousias et al.,
2013; Makropoulos et al., 2014). Nishida3s semi-automatic method
is the first that was applied to segment hippocampus on images
scanned before term though quantitative validations of their seg-
mentation results were not presented. The work presented by
Gousias and that by Makropoulos is more closely related to our hip-
pocampal segmentation technique. Gousias et al. performed two
types of automatic segmentation on the MR images of preterm
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infants scanned at term (Gousias et al., 2013). The first study used a
multi-atlas based approach which generated the final segmentation
through fusion of the atlas labels from multiple neonatal atlases,
while the second study employed a model-based technique which
was achieved by propagating labels from one of the eight maximum
probability neonatal ALBERT (MPNA) to the target brain. It is ex-
tremely difficult to compare segmentation results between laborato-
ries given the differences in neuroanatomical definitions and the
underlying MRI dataset itself, it is, nonetheless, important to com-
pare the results from our two groups against one another. In
Makropoulos et al. (2014), the authors report maximum hippocam-
pus Dice similarity coefficients (0.797 and 0.783; left and right
sides respectively) that are comparable with what are reported
here (0.783 and 0.808; left and right sides respectively). The main
difference in the evaluation of the segmentation lies in our 10-fold
Monte Carlo cross-validation (MCCV) and their leave-one-out vali-
dation. In addition, we have taken particular care to report a robust
and reliable manual segmentation protocol, something that we
have yet to see in the literature.

Different from multi-atlas based segmentation methods, MAGeT-
brain does not require an exhaustive manually defined atlas library
(typically only five input atlases is required to achieve a consistent
and accurate labeling). However, it is important to note that there
are other works that have explicitly addressed this issue. Both the
label fusion techniques of Wolz et al. (2010) and Coupé et al.
(2012) demonstrate that accurate segmentation can be achieved
through the use of 20 and 30 manually derived atlases as input. To
the best of our knowledge, however, neither of these methods has
been validated for the unique neuroanatomy of the neonate brain.
Further, neither performed their validations using a multi-fold anal-
ysis to demonstrate that the final segmentations are robust to the
choice of input parameters.

The intermediate template images can be chosen according to
specific selection strategies to best suit the segmentation of the
targeted subject images. The nonlinear registration algorithm, ANTs
(Avants et al., 2008; Avants et al., 2011), employed to accommodate
the inter-subject anatomical variability in this study uses more than
twenty million degrees of freedom of the deformation and was
ranked amongst the highest in a comprehensive validation study of
14 popularly used registration methods (Klein et al., 2009).
MAGeT-Brain also has the flexibility that it can be implemented
using any validated nonlinear registration algorithm. Although this
technique requires considerable computational resources, given rap-
idly improved accessibility of modern super computing infrastruc-
ture, this limitation can be readily overcome. MAGeT-Brain3s
minimal demand on labor-intense and time consuming manual la-
beling makes it a desirable approach to analyze the changes in hip-
pocampus and/or other brain structures for cohorts with a large
number of subjects.

One of the disadvantages of the MAGeT-Brain algorithm is its com-
putational complexity.While it would be possible to run this on a single
computer, the computation time would scale directly with the size of
the atlas and template libraries. In our case, all implementations were
done using a high-performance computing infrastructure in a grossly
parallel fashion in order to generate all of the segmentations described
in this manuscript. Given the increasing availability of this type of infra-
structure, wewould recommend that this algorithm be implemented in
the same way.

In conclusion, we have developed a reliable and efficient segmen-
tation protocol to outline the boundaries of hippocampal volumes in
preterm neonates, even early-in-life. Strong agreement is found be-
tween automatic MAGeT-Brain segmentations and the gold-
standard manual hippocampal segmentations in size and location.
No significant difference is observed when MR-PMA appropriate
atlases and templates are applied to segment hippocampi of images

acquired at similar MR-PMA. Hippocampal asymmetry is demon-
strated in both the early-in-life and term images segmented with
MAGeT-Brain. Using MAGeT-Brain segmentation pipeline, we are
able to analyze the hippocampal growth rates of neonates who
have both early-in-life and term images, and assess the effect of pre-
term birth on the volumes of hippocampi. Smaller hippocampal vol-
umes are associated with earlier gestational age at birth. Although a
number of methods were published for the segmentation of hippo-
campus in images of preterm-born infants that were acquired at
term-equivalent age (Ball et al., 2012; Gousias et al., 2012; Gousias
et al., 2013; Makropoulos et al., 2014; Nishida et al., 2006;
Thompson et al., 2008; Thompson et al., 2012; Thompson et al.,
2013), to the best of our knowledge, this is the first segmentation ap-
proach that is specifically designed to delineate the hippocampus
from the first weeks of life in very preterm-born neonates. This seg-
mentation pipeline also shows promise in segmenting fetal images
in the third trimester.
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Appendix A

Table 1A
The Dice3s Kappa measurements of similarity between the manually segmented hippo-
campi and the MAGeT-Brain segmented hippocampal volumes. In Experiment 2, 15
atlases and 21 templates were used and in MR-PMA appropriate study, 17 atlases and
21 templates that were acquired at similar MR-PMA with each target image were used.

Mean Dice3s
kappa

Left Right Both

Early-in-life Experiment 2 0.784 ± 0.053 0.804 ± 0.036 0.794 ± 0.036
MR-PMA
appropriate

0.782 ± 0.049 0.800 ± 0.033 0.791 ± 0.033

Term Experiment 2 0.781 ± 0.048 0.812 ± 0.030 0.797 ± 0.031
MR-PMA
appropriate

0.780 ± 0.048 0.814 ± 0.031 0.805 ± 0.032

Table 2A
The absolute displacements in x, y, and z directions and the Euclidean distances between
the centroids of the manually segmented hippocampi and those of the MAGeT-Brain
segmented hippocampi in early-in-life and term groups of Experiment 1.

Mean of absolute
displacement

x (mm) y (mm) z (mm) Euclidean
distance (mm)

Early in life — left 0.45 ± 0.30 0.47 ± 0.31 0.41 ± 0.32 0.90 ± 0.35
Early in life — right 0.34 ± 0.28 0.61 ± 0.50 0.45 ± 0.35 0.97 ± 0.49
Term — left 0.46 ± 0.39 0.86 ± 0.60 0.43 ± 0.37 1.20 ± 0.65
Term — right 0.49 ± 0.30 0.82 ± 0.48 0.46 ± 0.37 1.20 ± 0.45
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