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Abst ract

Background: Altered brain development is evident in children born very preterm (24–32 weeks gestational age), including
reduction in gray and white matter volumes, and thinner cortex, from infancy to adolescence compared to term-born peers.
However, many questions remain regarding the etiology. Infants born very preterm are exposed to repeated procedural
pain-related stressduring a period of very rapid brain development. In this vulnerable population, we have previously found
that neonatal pain-related stress is associated with atypical brain development from birth to term-equivalent age. Our
present aim was to evaluate whether neonatal pain-related stress (adjusted for clinical confounders of prematurity) is
associated with altered cortical thickness in very preterm children at school age.

Methods: 42 right-handed children born very preterm (24–32 weeks gestational age) followed longitudinally from birth
underwent 3-D T1 MRI neuroimaging at mean age 7.9 yrs. Children with severe brain injury and major motor/sensory/
cognitive impairment were excluded. Regional cortical thickness was calculated using custom developed software utilizing
FreeSurfer segmentation data. The association between neonatal pain-related stress (defined as the number of skin-
breaking procedures) accounting for clinical confounders (gestational age, illness severity, infection, mechanical ventilation,
surgeries, and morphine exposure), was examined in relation to cortical thickness using constrained principal component
analysis followed by generalized linear modeling.

Results: After correcting for multiple comparisons and adjusting for neonatal clinical factors, greater neonatal pain-related
stress was associated with significantly thinner cortex in 21/66 cerebral regions (p-values ranged from 0.00001 to 0.014),
predominately in the frontal and parietal lobes.

Conclusions: In very preterm children without major sensory, motor or cognitive impairments, neonatal pain-related stress
appears to be associated with thinner cortex in multiple regions at school age, independent of other neonatal risk factors.

Citat ion: Ranger M, Chau CMY, Garg A, Woodward TS, Beg MF, et al. (2013) Neonatal Pain-Related Stress Predicts Cortical Thickness at Age 7 Years in Children
Born Very Preterm. PLoS ONE 8(10): e76702. doi:10.1371/journal.pone.0076702

Editor: Yoko Hoshi, Tokyo Metropolitan Institute of Medical Science, Japan

Received June 3, 2013; Accepted August 25, 2013; Published October 18, 2013

Copyright: ß 2013 Ranger et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by the Eunice Kennedy Shriver Institute of Child Health and Human Development (NICHD/NIH) grant RO1 HD039783
[R.E.G], the Canadian Institutes for Health Research (CIHR) grants MOP86489 [R.E.G.] and MOP79262 [R.E.G., S.P.M.]. Salary support includes a Senior Scientist
award, Child & Family Research Institute [R.E.G]; Bloorview Children’s Hospital Chair in Paediatric Neuroscience [S.P.M]; Post-doctoral Fellowships, CIHRand Pain In
Child Health CIHRStrategic Training Initiative in Health Research [M.R.]. The funders had no role in study design, data collection and analysis, decision to publish,
or preparation of the manuscript.

Compet ing Interest s: The authors have declared that no competing interests exist.

* E-mail: rgrunau@cw.bc.ca

Int roduct ion

Altered brain development is evident in children born very
preterm (24–32 weeks gestational age) in early infancy [1–3] and
at school-age [4,5], including reduced gray and white matter
volumes in infancy, childhood and adolescence [6–10], compared
to term-born peers. Normal brain growth involves changes in
cortical thickness reflecting cellular maturational changes related
to myelination and synaptic pruning [11]. Recent findings from
our group, in a separate cohort, showed delayed microstructural

development of the cortical gray matter in very preterm neonates
at term equivalent [12]. Children born preterm show altered
cortical thickness in childhood and adolescence [7,13–18].
Specifically, thinner cortex has been reported in superiorand
temporal, middle frontal, anterior cingulate cortex, supramaginal,
precuneus, and post central regions when compared to term born
controls at school age [7,14]. In adolescents born preterm,thinner
cortex has been reported in the enthorhinal, temporal, and
parietal regions [13,16,18]. Thicker cortex has been reported in
preterm children with periventricular leukomalacia, identified on
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neonatal ultrasound and still evident on magnetic resonance (MR)
images at school age [14]. Little is known about the etiologyand
possible clinical risk factors underlying regional cortical thinning in
children born preterm who do not have major brain injury.

Early-life adversity in animal models, including maternal
separation [19–22] and pain exposure [23–27], induces long-term
changes in brain and behavior (reviews [28,29]). Infants born very
preterm are exposed to weeks to months of hospitalization inthe
neonatal intensive care unit (NICU) during a period of rapid
neuronal proliferation and cell differentiation (e.g. differentiation
of subplate neurons, formation of synapses, selective pruning of
neuronal processes and synapses). Repeated procedures inducing
pain-related stress place very preterm infants at particular risk due
to the very rapid brain development and programming of stress
systems while they are in the NICU [30,31]. Given our previous
findings that pain-related stress was associated with atypical brain
development in the neonatal period [8], our aim was to evaluate
whether neonatal pain-related stress, quantified as the number of
skin-breaking procedures adjusted for confounding clinical factors,
is associated with variations in cortical thickness at age 7years in a
different cohort of children born very preterm.

We hypothesized that greater neonatal pain-related stresswould
be related to reduced cortical thickness, after adjusting for
confounding neonatal clinical factors associated with premature
birth and neonatal care such as gestational age, number of days on
mechanical ventilation, early severity of illness, surgery, infection,
and morphine exposure.

Materials and Methods

1. Study Design and Participants
Participants were part of a larger longitudinal study of long-term

effects of neonatal pain-related stress on neurodevelopment of
children born very preterm (24–32 weeks gestation) e.g. [31,32],
who were admitted to the level III NICU at British Columbia’s
Women’s Hospital between 2000 and 2004. Out of 106 children
seen at age 7 years, 43 refused magnetic resonance imaging (MRI),
leaving 63 school-age children, 2 were not scanned, 61 underwent
MRI. From the 61 preterm children that underwent MRI scans at
age 7 years, 13 were excluded due to poor quality MR images due
to movement artifact and one for missing neonatal clinical data. In
addition, two children with periventricular leukomalacia(PVL)
and/ or intraventricular hemorrhage (IVH) grade 3 or 4 on
neonatal ultrasound and confirmed on MR at age 7 years (author
KP) were excluded, and three left handed children were excluded
to eliminate the effect of handedness on cortical thickness
asymmetries [33,34]. We included in our study three very preterm
infants diagnosed on neonatal ultrasound with IVH grade 1 or2
(two infants with IVH grade 1) and six children that showed
minimal to moderate white matter injury (# 3 lesions) on MR
scans at school-age, one of which had IVH grade 1 on neonatal
ultrasound. None of the cortical thickness measures for these
children were outliers compared to the rest of the sample,
therefore they were included in the study. All of the children
scanned had an IQ score above 70 on the Wechsler Intelligence
Scale for Children –4th Ed [35], and none had a major sensory or
motor impairment. The final study sample comprised 42 right-
handed children (38% boys).

The study was approved by the Clinical Research Ethics Board
of the University of British Columbia and the British Columbia
Children’s and Women’s Research Ethics Board. Written
informed consent was obtained from parents and assent from
children.

2. Procedures
Magnetic r esonance im aging.MRI was performed using a

standard 12 channel head coil on a Siemens 1.5 Tesla Avanto
(Berlin, Germany) with VB 16 software. The following images
were acquired: a 3D T1 weighted SPGR sequence 18/ 9.2/ 256/
1 mm/ 0/ 2566 256 (TR/ TE/ FOV/ Thickness/ Gap/ Matrix), axi-
al FSE T2 4030/ 90/ 220/ 3 mm/ 0.1 mm/ 5126 354, axial FLAIR
8900/ 87/ 5 mm/ 1 mm/ 2566 154 and a 12 direction DTI se-
quence 7800/ 82/ 256/ 2 mm/ 0/ 1286 128 using B values of 700
and 1000. All imaging sessions were performed without sedation.
On the study day, each child first had a session in a mock scanner
to acclimatize to the noise and feeling of being in a MRI scanner,
followed by the actual study scan. Children were instructedto
remain still and watched a video during the sessions that lasted
approximately 30 minutes.

An experienced pediatric neuroradiologist (KP), blinded to the
child’s medical history, assessed the MR scans for ventriculome-
galy, cerebellar hemorrhage and severity of white matter injury, as
previously described [36]. No child had a severe brain injury at
school age (i.e. no cerebellar hemorrhage, ventriculomegaly or
severe white matter injury [i.e.. 3 lesions or 2 with 5%
hemisphere involved]).

Cor tica l th ickness m easur es.Regional cortical thickness
was calculated using a topology aware technique originally
proposed by Gibson et al. [37] which modifies the normally
accepted method of calculating the thickness as the length of the
streamlines obtained from the well-established and validated
Laplacian streamlines method [38,39]. This implementation uses
FreeSurfer surfaces to enforce separation of volumetric domains,
which is important where adjacent gyri/ sulci may abut. In the
original implementation, the abutting gyri/ sulci can leadto
overestimation of cortical thickness, which is avoided in this
custom implementation, thereby giving more accurate thickness in
regions where topological issues such as touching gyri occur, and
no difference in thickness calculated in other regions. Fordetecting
group-wise maps of statistically significant thickness changes,
FreeSurfer and Laplacian-streamlines based volumetric methods
lead to similar results [40]. The coupled surface method establishes
the inner surface initially and propagates that mesh to another
surface thus preserving the corresponding points incorporating the
topology dictated by the inner and the outer surfaces of the gray
matter in the volumetric Laplacian streamline thickness compu-
tation as described in [41] as the arc length of the streamlines of
the solution of Laplace’s equation on the cortical mantle.

Cortical thickness was calculated for each individual brain using
the segmentation output from the preprocessing step, wherethe
output obtained is the pial surface for each subject where each
vertex has a thickness value associated with it. The surfaces used to
define the outer and inner boundaries in our methods were
constructed using an automated cortical surface reconstruction
method developed by Dale and Fischl [42,43]. The 66 brain
regions of interest (ROIs) used in this study were parcellated by
FreeSurfer using the Desikan-Killiany Atlas, an automated
labeling system developed and validated by Desikan et al. [44].

Clin ica l da ta collection. Medical and nursing chart review
of neonatal data from birth to term equivalent was carried out
by highly trained neonatal research nurses. Data collected
included, but was not limited to, birth weight, gestationalage
(GA), number of days on mechanical ventilation and/ or
oscillation, illness severity on day 1 (Score for Neonatal Acute
Physiology [SNAP]- II [45]), number of surgeries, presenceof
culture proven infection, and cumulative dose of morphine.The
cumulative dose of morphine was calculated (intravenous dose
plus converted oral dose) as the average daily dose adjustedfor
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daily body weight, multiplied by the number of days the drug
was given, as we have used previously [8,31]. We quantified
neonatal pain-related stress as the number of skin-breaking
procedures (e.g., heel lance, peripheral intravenous or central
line insertion, chest-tube insertion, tape removal, and nasogas-
tric tube insertion) during the stay in the NICU, as previously
used [8,31,46]. Each attempt at a procedure was counted as
one skin-break; all nursing staff in our NICU have been trained
to precisely record each attempt.

3. Statistical Analysis
Principal component analysis (PCA) is a method of data

reduction of large sets of related variables by reducing them to a
few vectors of weightings that best explain the variance, while
losing as little information as possible. Each extracted vector,
referred to as a ‘‘component’’, accounts for a portion of thetotal
variance in the data: the first component accounts for the largest
amount of variance, with each successive component accounting
for a smaller amount of the total variance. Constrained principal
component analysis (CPCA) combines multivariate multiple
regression and PCA, and allows examination of the component
structure of the variance in a set of dependent variables that is
specifically predicted by a set of predictor variables [47–49].
CPCA is two-step process, referred to as the external and internal
analysis. The external analysis consists of a multivariateleast
squares multiple regression of the dependent measures on the
independent measures, producing predicted and residual scores for
each dependent measure. In the present study, the matrix of
predicted scores reflects the variance in cortical thickness that can
be accounted for by the neonatal clinical variables, and the
residual matrix reflects the variance that cannot be accounted for
by the neonatal clinical variables. Seven neonatal clinical
predictors were included: number of skin-breaking procedures,
gestational age, number of days on mechanical ventilation,illness
severity on day 1 (SNAP-II), number of surgeries, culture proven
infection, and cumulative morphine exposure adjusted for daily
weight. The internal analysis consists of PCAs on each of the
aforementioned matrices. The resulting component solutions
(overall, predicted, and residual solutions) are examinedto
determine which dimensions of the cortical thickness can be
explained by the neonatal clinical variables. To determinethe
particular neonatal clinical predictors that are related to each of
the components extracted from the predicted solution, correlations
were computed between each component score and the set of
independent variables (i.e., neonatal clinical data). Thenumber of
components retained for each PCA was determined by inspection
of scree plots. All PCA solutions were separately rotated using
varimax with Kaiser normalization. Solutions were bootstrapped
1000 times by Monte Carlo methods to produce confidence
intervals and p-values [50,51]. Computations for CPCA and
bootstrapping were carried out using MATLAB version 7.6 (The
MathWorks, 2008, Natick, MA).

Then, to further examine the individual contribution of each
neonatal predictor on the measured variations of cortical
thickness, we conducted a generalized linear (GENLIN) modeling
analysis, adjusting for neonatal clinical factors (GA, SNAP-II at
day 1, culture proven infection, number of days on mechanical
ventilation, number of surgeries, cumulative morphine exposure
adjusted for daily weight, and number of skin-breaking proce-
dures). GENLIN provides an extension of general linear models
and relaxes the requirement of equality or constancy of variances
that is required in traditional linear models. GENLIN was carried
out using the Statistical Package for Social Sciences (SPSS) version
16.0 (IBM, Somers, NY). False discovery rate (FDR 5%) [52] was

employed to correct for multiple comparisons between brain
regions for CPCA and GENLIN.

Results

Demographic and neonatal clinical data are presented in
Table 1. Children were scanned at a median age of 7.8 years
(interquartile range [IQR] 7.7–8). During their NICU stay,these
children underwent a median of 74 (IQR 45–136) skin-breaking
procedures.

Since child age may contribute to variations in cortical
development [11], we performed correlations between age at
MR scan and cortical thickness and no statistically significant
associations were found, after Bonferroni correction for multiple
comparisons. Given that gender differences in cortical thickness
have been reported in adolescence [53], we conducted indepen-
dent t-tests comparing cortical thickness in boys and girls, finding
no statistically significant differences in any of the 66 brain regions
assessed, after Bonferroni correction for multiple comparisons. It
was noted that without correction, cortical thickness differed by
gender only in 1/ 66 regions.

Table 1. Demographic and neonatal characteristics.

Characterist ics
n = 42 (16 boys,
26 girls)

Neonatal characterist ics

GA at birth (weeks) 29.71 (27.29–31.57)

Birth Weight (grams) 1203 (877–1558)

SGA (number, %) 5 (12%)

IVH grade I–II (number, %) 3 (7%)

Illness severity day 1 (SNAP-II) 8.5 (0–14.75)

Skin-breaking procedure (number) 74 (45–136)

Mechanically ventilated (number, %) 25 (59.5%)

Days of mechanical ventilation (number) 2 (0–10)

Culture proven infection (number, %) 11 (26)

Surgery $ 1 (number, %) 8 (19)

Morphine (dose in mg1) 0.00 (0–664)

Non-mechanically ventilated 0.00 (0–0)

Mechanically ventilated 205 (42–1332)

School Age characterist ics at scan

Chronological Age (years) 7.76 (7.71–8.04)

Weight (kg) 23.1 (21.3–26.3)

Height (cm) 124 (120–126.6)

Head circumference (cm) 51.5 (50–52.7)

Mild/moderate white matter injury
(number, %)2

6 (14%)

WISC-IV Full scale score (IQ) 101 (91–108)

Median and interquartile range are given unless otherwise specified.
1Cumulative daily dose adjusted for daily body weight.
2Mild to moderate white matter injury (# 3 lesions) on MRscan at school age (1
child with mild white matter injury at 7 years had IVH grade 1 on neonatal
ultrasound).
GA, gestational age; SGA, small for gestational age (, 10%tile); %, percent; IVH,
intraventricular hemorrhage grade I–II diagnosed on neonatal ultrasound;
SNAP-II, score for neonatal acute physiology; WISC-IV, Wechsler Intelligence
Scale for Children –4th Ed.
doi:10.1371/journal.pone.0076702.t001
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1. Constrained Principal Component Analysis (CPCA)
Given the limited number of participants, the high number of

brain regions examined, and correlated neonatal clinical factors,
we first examined the relationships between the neonatal clinical
variables and cortical thickness in all brain regions. Thispermitted
unbiased handling and interpretation of our data.

Table 2 shows the distribution of variance of the overall,
predicted and residual solutions of the CPCA. Three components
were extracted from the predicted solutions (eigenvalues 14.77,
2.46, and 1.56 respectively), which corresponds to 13.4% ofthe
overall variance for component 1, 7.5% and 6.9% for components
2 and 3 respectively. The external analysis showed that the 7
clinical predictors accounted for 32.9% of the overall variance in
cortical thickness.

Component loadings and their bootstrapped confidence inter-
vals and p-values in each brain regions of interest (ROIs) are
summarized in Table 3. Both the first and second components
were characterized by negative loadings on all brain regions (i.e.
decreased cortical thickness), while the third component had
positive loadings (i.e. increased cortical thickness). The dominant
loadings on the first component were distributed prominently on
various frontal and central brain regions. On the second
component, left supramarginal, bilateral inferior parietal, and
right lateral occipital ROIs had the largest loadings. Bilateral
caudal anterior cingulate and left lingual ROIs had the largest
loadings for the third component.

The variance in cortical thickness explained by the 7 neonatal
clinical factors within each component is shown in Table 4. The
external analysis in CPCA showed that pain-related stress was the
strongest predictor from our set of 7 neonatal factors. The number
of skin-breaking procedure loaded highly on the first two
components, infection loaded significantly only on component 1,
while surgery significantly loaded uniquely and predominately on
component 2. Morphine exposure and duration of mechanical
ventilation significantly loaded on all three components but
dominated the 3rd component. Severity of illness on day 1

(SNAP-II) loaded significantly on all 3 components. Component 1
suggests that the number of skin-breaking procedures during
NICU care, illness severity on day 1, culture-proven infection,
gestational age, cumulative morphine exposure, and days on
mechanical ventilation are related to reduced cortical thickness,
primarily in frontal and parietal regions. Component 2 in addition,
captured predominately surgery, but not infection, and is related
to reduced cortical thickness, primarily in parietal, temporal and
occipital regions. Component 3, contrary to the two other
components, was positively associated with cortical thickness and
primarily reflected cumulative morphine exposure and number of
days on mechanical ventilation. Therefore, we interpreted
component 1 as procedural and inflammation related pain,
component 2 as surgery related pain, and component 3 as
primarily morphine exposure. Since both components 1 and 2 had
negative loadings on all brain regions, this implied that higher
procedural/ inflammatory and surgical pain were associated with a
reduction in cortical thickness predominately in the frontal and
parietal regions for component 1, and parietal, temporal and
occipital regions for component 2. In contrast, component 3
showed a positive association with cortical thickness, predomi-
nately within the anterior cingulate cortex ROIs, suggesting
thicker cortex in association with higher cumulative morphine
exposure in these regions.

To check whether birth weight (BW) might provide important
additional information beyond GA in explaining variationsin
cortical thickness, we added BW to the set of neonatal factors in a
further CPCA analysis. With the inclusion of BW and GA, the
overall predictable variance accounted for by the neonatalfactors
increased by only 1.8%. Given the low sample size and the high
correlation between GA and BW (r= 0.76, p, 0.0001) we only
retained GA in further analyses.

2. Generalized Linear Modeling (GENLIN)
Neonatal clinical factors were inspected for normality, then

when necessary were log transformed (neonatal skin-breaking

Table 2. Constrained principal component analysis results to explain variance in cortical thickness in relation to neonatal clinical
factors.

External Analysis (Regression) Internal Analysis (PCA)

Variance Total Comp 1 Comp 2 Comp3 1+2+3

Overall 67.61 13.70 12.34 11.60 37.64

% Overall 100% 20.26% 18.26% 17.16% 55.68%

Predictable 22.21 9.04 5.10 4.66 18.79

% Predictable 100% 40.68% 22.95% 20.96% 84.59%

% Overall 32.85% 13.36% 7.54% 6.89% 27.79%

Residual 45.40 10.62 9.13 19.75

% Residual 100% 23.39% 20.10% 43.50%

% Overall 67.15% 15.71% 13.50% 29.21%

Comp = Component; PCA= principal component analyses; eigenvalues for 3 components= 14.77, 2.46, 1.56 respectively.
In Principal component analysis (PCA), a component refers to a vector of weightings that best explain the variance. Each extracted component accounts for a portion of
the total variance in the data: the first component accounts for the largest amount of variance, with each successive component accounting for a smaller amount of the
total variance.
In Constrained Principal Component Analysis, the external analysisconsisted of a multivariate multiple regression of the predictor variableson the dependent measures,
which produces predicted and residual scores. In the present study, the matrix of predicted scores reflects the variance in cortical thickness that is predicted from the 7
neonatal clinical variables, and the residual matrix reflects the variance that is not predicted by these variables.
The internal analysis consisted of three different PCAs: one on the unconstrained variance in cortical thickness (Overall), one on the variance in the cortical thickness
predictable from the 7 neonatal clinical variables (Predictable), and one on the variance in cortical thickness not predictable from the clinical variables (Residual). The
variance accounted for by the external analysisand each component extracted in the internal analysis is listed in regular font. The percentagesof variance accounted for
by the external analysis and each component extracted in the internal analysis are listed in italic font. All internal analyses were separately rotated using varimax.
doi:10.1371/journal.pone.0076702.t002
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Table 3. Brain regions with loadings for the 3 components.

Component Brain Regions Component loadings p-value lower CI upper CI

1 left precentral 2 0.65 , 0.0001 0.39 0.89

1 left superior frontal 2 0.62 , 0.0001 0.35 0.87

1 right superior frontal 2 0.54 , 0.0001 0.28 0.78

1 left superior parietal 2 0.60 , 0.0001 0.31 0.88

1 left inferior parietal 2 0.56 , 0.0001 0.28 0.82

1 left post central 2 0.50 , 0.0001 0.25 0.74

1 right superior parietal 2 0.52 , 0.0001 0.26 0.78

1 left supramarginal 2 0.44 0.0001 0.21 0.66

1 right inferior parietal 2 0.52 0.0002 0.24 0.79

1 left frontal pole 2 0.54 0.0003 0.25 0.83

1 left precuneus 2 0.48 0.0003 0.22 0.73

1 right rostral middle frontal 2 0.49 0.0005 0.21 0.75

1 left rostral middle frontal 2 0.47 0.0005 0.20 0.73

1 right pars orbitalis 2 0.49 0.0005 0.21 0.76

1 right middle temporal 2 0.51 0.0007 0.21 0.79

1 left caudal middle frontal 2 0.50 0.0008 0.21 0.79

1 right caudal middle frontal 2 0.57 0.0009 0.23 0.90

1 right supramarginal 2 0.48 0.001 0.19 0.75

1 right precuneus 2 0.44 0.002 0.16 0.71

1 right inferior temporal 2 0.43 0.002 0.16 0.69

1 right pars opercularis 2 0.44 0.003 0.15 0.72

1 right superior temporal 2 0.48 0.003 0.16 0.78

1 left paracentral 2 0.57 0.003 0.20 0.94

1 right paracentral 2 0.54 0.004 0.17 0.90

1 right precentral 2 0.55 0.006 0.16 0.94

1 left pars triangularis 2 0.38 0.006 0.11 0.65

1 left middle temporal 2 0.38 0.009 0.09 0.65

1 right postcentral 2 0.44 0.01 0.10 0.76

1 right lateral orbitofrontal 2 0.37 0.01 0.09 0.65

1 left pars opercularis 2 0.33 0.01 0.07 0.58

1 right pars triangularis 2 0.41 0.01 0.09 0.73

1 left entorhinal 2 0.37 0.02 0.06 0.66

2 left inferior parietal 2 0.48 0.0003 0.22 0.74

2 left inferior temporal 2 0.46 0.0008 0.19 0.72

2 right inferior parietal 2 0.51 0.0008 0.21 0.80

2 right lateral occipital 2 0.54 0.001 0.21 0.85

2 left supramarginal 2 0.55 0.003 0.19 0.90

2 left precuneus 2 0.31 0.003 0.10 0.51

2 left medial orbitofrontal 2 0.44 0.004 0.14 0.73

2 left superior parietal 2 0.38 0.005 0.11 0.63

2 right superior parietal 2 0.39 0.006 0.11 0.65

2 right inferior temporal 2 0.36 0.006 0.10 0.61

3 left caudal anterior cingulate 0.56 0.0001 2 0.84 2 0.28

3 left lingual 0.54 0.0005 2 0.83 2 0.23

3 right pars opercularis 0.42 0.002 2 0.67 2 0.15

3 right caudal anterior cingulate 0.57 0.003 2 0.93 2 0.19

3 left posterior cingulate 0.38 0.004 2 0.63 2 0.12

3 left rostral anterior cingulate 0.46 0.004 2 0.76 2 0.15

3 right rostral middle frontal 0.38 0.004 2 0.64 2 0.12

Pain Predicts Thinner Cortex in Preterm Children

PLOS ONE | www.plosone.org 5 October 2013 | Volume 8 | Issue 10 | e76702



procedures and number of days on mechanical ventilation).
Using the findings from the CPCA, a GENLIN model for each
of the 66 brain regions was conducted, corrected for multiple
comparisons (i.e. 5% FDR). After adjusting for neonatal clinical
factors (i.e. gestational age, SNAP-II at day 1, infection,number
of days on mechanical ventilation, number of surgery,
cumulative morphine exposure), greater number of neonatal
skin-breaking procedures was significantly associated with
reduced cortical thickness in 21 out of the 66 brain regions
assessed (p-values ranged from 0.00001 to 0.014; Table 5), p-
value threshold for significance adjusted for multiple compar-
isons with a FDR correction set at 5%. Most significant
(p# 0.001) thinning in relation to neonatal pain-related stress
was found in bilateral postcentral, superior frontal, rostral
middle frontal, left hemisphere precentral and pars orbitalis, as
well as the right hemisphere supramarginal region. Of all the
neonatal clinical factors, pain-related stress (adjustedfor
neonatal clinical factors) was the most robust independent
predictor of regional variation in cortical thickness. The
association between neonatal pain-related stress (adjusted for
confounders) and right hemisphere postcentral and left pars
orbitalis cortical thickness are shown as examples (Figure1).

After adjusting for neonatal clinical factors including neonatal
pain-related stress, and correcting for multiple comparisons
(FDR 5%), greater morphine exposure was associated with
increased cortical thickness in bilateral caudal anteriorcingulate
(p= 0.000 right; p= 0.003 left), right posterior cingulate
(p= 0.002), as well as in the left lingual (p= 0.002) and middle
temporal regions (p= 0.002) (Table 6). In our NICU, very
preterm infants only received morphine if they underwent
mechanical ventilation (n = 25). To confirm these GENLIN
results, we reran the analysis on the 25 infants exposed to
mechanical ventilation. Morphine remained significant only in
the right caudal anterior and posterior cingulate corticesin the
subset of ventilated very preterm children.

Discussion

Our primary finding was that greater neonatal pain-related
stress (adjusted for multiple clinical factors related to preterm birth
and NICU care) was associated with lower cortical thicknessat
school age in children born very preterm. Specifically, in a
conservative two-step approach, first using constrained principal
component analysis followed by generalized linear modeling to
control for clinical confounders related to prematurity, we found
that pain-related stress was the strongest predictor of thevariation
in overall cortical thickness. Precisely, after applying a5% false
discovery rate to control for overall Type-I error, and adjusting for
neonatal clinical factors, greater exposure to neonatal skin-
breaking procedures was the predominant consistent neonatal
factor related to thinner cortex in 21/ 66 areas, specifically in

frontal, parietal, and temporal regions, independent of the
neonatal confounding factors.

Consistent with our present study, we recently found in a
different cohort of preterm infants, after similarly controlling for
multiple confounding neonatal clinical factors, that greater
exposure to neonatal pain-related stress was associated with
altered brain microstructural development (subcortical gray matter
and white matter) from early in life to term equivalent age [8]. It is
known that during the last trimester of gestation and early
postnatally, major axonal development takes place in the
cerebrum, and damage to white matter tracts (i.e. decreased
myelination) and subcortical structures leads to detrimental effects
on neuronal migration and cortical development [30,54]. Thus, in
two independent cohorts, our work provides converging evidence
that higher exposure to neonatal pain-related stress may contrib-
ute to altered brain development early in life and later at school-
age in children born very preterm.

Prematurity has been associated with short and long-term
abnormalities in cortical thickness compared to healthy term
born controls [7,13–18]. Lax et al. [7] showed lower overall
mean cortical thickness in 25 very preterm 9 year-old children
compared to 32 full-term controls, with significant cortical
thinning in bilateral precuneus and right supplemental motor
cortex, anterior insula, superior temporal, and postcentral
regions. Compared to 22 control children born at full-term,
Zubiaurre-Elorza et al. [14] found reduced cortical thickness in
left middle and superior frontal regions, supramarginal, and post
central gyri in 14 preterm 9 year-old children with no evidence
of PVL. In the present study, we found lower cortical thickness
was related to greater neonatal pain exposure in these same
regions among children born very preterm. Thus it appears we
have identified a potential factor that may contribute to the
etiology of reduced cortical thickness in very preterm children.
Moreover, our current findings of an association between
neonatal pain-related stress (adjusted for clinical confounders)
and cortical thickness are consistent with our previous reports
on short-term [8] and long-term [55] brain development.
Importantly we excluded children with severe brain injury (i.e.
PVL and/ or IVH grade 3–4) in the newborn period, and/ or
major neurodevelopmental, motor or sensory impairments,
therefore our findings are not explained by severe brain injury.
Testosterone levels play a role in cortical thickness in
adolescence [53]. In the present study, in 7 year olds born
very preterm we did not find differences in cortical thickness
between boys and girls in preliminary analyses. Gender was not
included as a predictor in our statistical modeling due to limited
sample size, and remains for future studies in preterm pre-
adolescents.

Thinner cortex in specific regions in our sample of very preterm
children may be related to delayed neuronal or glial maturation or
cell death, or both. Normal cortical maturation shows an increase

Table 3. Cont.

Component Brain Regions Component loadings p-value lower CI upper CI

3 left lateral orbitofrontal 0.33 0.005 2 0.55 2 0.10

3 right pars triangularis 0.32 0.005 2 0.54 2 0.09

3 left fusiform 0.37 0.007 2 0.64 2 0.10

3 left inferior temporal 0.30 0.01 2 0.52 2 0.07

C.I= 95% confidence interval; only p-values with less than 5% false discovery rate are listed.
doi:10.1371/journal.pone.0076702.t003
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in cortical thickness during childhood (up to age 11 years) in most
of the lateral frontal, temporal, parietal and occipital regions, a
reduction during adolescence, followed by stabilization in adult-
hood [56]. Hence it is possible that normally occurring cortical
growth is delayed in children born very preterm. Recent findings
in a premature fetal sheep model showed the importance of cell
dysmaturation rather than cell loss (especially neuronal)during
cortical growth and microstructure development [54]. The
potential to normalize the maturation of these cells remains
unknown. Although mechanisms underlying cortical thinning in
preterm school-age children remain unclear, findings in rat pup
pain models [57–59] stress the long-term damaging effects of
repetitive neonatal pain exposure on cortical and subcortical
neuronal development. However, since we did not compare
cortical thickness of very preterm children with a term born
control group, it is not possible at this time to conclude that
relative reduction in cortical thickness among the very preterm
children reflects delayed or accelerated cortical development.

Moreover, volumetric MRI and diffusion tensor imaging (DTI)
analyses have demonstrated decreased neuronal volumes (e.g. in
cerebellum, thalamus, cerebral cortex) and possible axonal
disturbances in very low birth-weight neonates from term-
equivalent age to later in adulthood [30]. Sensorimotor, premotor,
temporal and parieto-occipital regions are generally reported as
the cortical regions showing the most significant volumetric
reductions in preterm born school-age children and adolescents
[6,9,60–62]. Smith and colleagues [2] found that greater exposure
to stressful procedures (e.g. heel lance/ venipuncture, intubation/
extubation, diaper change) in the NICU was associated with
reduced brain size in the frontal and parietal regions in preterm
neonates assessed at term equivalent age. In addition, in that
study, functional connectivity MRI and DTI measures showed
that alteration in brain microstructure and functional connectivity
within the temporal lobes were related to greater stress exposure.
Thus, signifying of the importance of early adverse stressful and
painful experience converge.

In response to heel lance, Slater et al. [63] showed that greater
neuronal activity was evident in premature neonates compared to
age-matched term-born counterparts. This increased neuronal
excitation could be detrimental to the preterm neonate’s immature
and rapidly developing neural circuitry by altering apoptosis

(programmed cell death) and neuronal survival [64]. However, our
understanding of how neonatal pain and stress exposure impacts
neurodevelopment in these immature infants is still emerging and
basic animal research is crucial to determine mechanisms.

To our knowledge, only a few studies in the neonatal rodent
model have specifically examined pain and altered brain
development. Early inflammatory pain in neonatal rodent pups
induced increased cortical and subcortical neuronal activation
[59], increased hippocampal gene expression [58], and widespread
cell death [57,59], thus modifying both the structure and function
of the developing brain [57]. Persistent inflammatory pain
(formalin injections) or repetitive pain (saline injections) may
induce major neuronal apoptosis and altered expression of
neurodevelopmentally important proteins in the rat pup brain
during the first week of life [57]. The most degenerative cells were
found in the lamina II of both frontal and parietal cortex.
However, there were differences in long-term effects on theadult
brain depending on the timing and type of neonatal pain [57].
Given that the majority of the neonatal pain-related stress
procedures occur within the first weeks of the NICU stay,
especially in those who undergo the most procedures [8],
addressing the management of procedural pain-related stress to
protect the developing brain in very preterm infants is pressing.
Moreover, opioids seem to have differing effects in the presence or
absence of pain. In the Duhrsen et al. study [57] and in previous
findings in neonatal rat models [23,65], pre-emptive morphine
only protected the neonatal pup against long-term brain and/ or
behavioral changes when inflammatory pain was present. In the
present study, neonatal cumulative morphine exposure was not
related to variation in cortical thickness in 20 of the 21 brain
regions significantly adversely associated with pain-related stress
exposure. In contrast, greater neonatal morphine was associated
with thicker cortex in the cingulate cortices, regions known to be
involved in mediating opioid analgesia [66–69], as well as in
processing emotional aspects of pain [66,70–72]. However,this
relationship remained significant only in 2/ 66 regions when
examined in the subset of children who had been exposed to
mechanical ventilation and to morphine as a neonate. Thus this
finding may reflect Type-I error.

Routine treatment of pain with morphine is no longer
advocated in ventilated preterm infants in the NICU [73], since

Table 4. Constrained principal component analysis loadings for the 7 neonatal clinical factors to explain variance in cortical
thickness.

Component 1 Component 2 Component 3

Loading p-value C.I Loading p-value C.I Loading p-value C.I

Pain 0.67 , 0.0001{ [0.37, 0.98] 0.57 0.0003{ [0.26, 0.87] 2 0.06 0.70 [2 0.37, 0.25]

Morphine 0.38 0.02{ [0.08, 0.68] 0.62 , 0.0001{ [0.32, 0.93] 0.59 , 0.0001{ [0.29, 0.88]

Surgery 0.05 0.75 [2 0.26, 0.36] 0.92 , 0.0001{ [0.62, 1.23] 0.28 0.07 [2 0.02, 0.58]

Ventilation 0.32 0.04{ [0.02, 0.63] 0.63 , 0.0001{ [0.32, 0.94] 0.57 0.0002{ [0.26, 0.87]

SNAP-II 0.75 , 0.0001{ [0.46, 1.06] 0.32 0.04{ [0.01, 0.63] 0.36 0.02{ [0.05, 0.67]

Infection 0.47 0.002{ [0.17, 0.78] 0.04 0.79 [2 0.26, 0.34] 0.001 0.99 [2 0.31, 0.31]

GA 2 0.48 0.002{ [2 0.79, 2 0.18] 2 0.64 , 0.0001{ [2 0.94, 2 0.34] 0.02 0.92 [2 0.28, 0.31]

Predictor loadings were computed as correlations between component scores and the set of neonatal clinical variables.
C.I.= 95% confidence interval; Pain = number of skin-breaking procedures exposure; Morphine= cumulative daily dose in milligrams adjusted for daily body weight;
Ventilation = number of days on mechanical ventilation; Surgery= number of surgeries; Infection = number of culture proven infection; SNAP-II= score for neonatal
acute physiology; GA= gestational age.
{ p-value threshold for significance adjusted for multiple comparisons with a false discovery rate (FDR) correction set at 5%; p-values and confidence intervals were
computed by bootstrapping 1000 times.
doi:10.1371/journal.pone.0076702.t004
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in the short-term continuous morphine infusions lead to longer
duration of mechanical ventilation and longer time to reachfull
enteral feeding [74], and concerns remain about long-term effects
of analgesia and sedation on the developing brain [73–78]. Our
present findings of an association between higher exposureto
neonatal morphine and greater cortical thickness in the cingulate
regions should be considered in the context of the lack of
significant effect in the rest of the cortex. It remains for future
research to verify whether these findings imply delayed or
accelerated cortical development in very preterm infants at school
age. Randomized controlled clinical trials of short [74,75] and
long-term effects [76,79,80] of pre-emptive morphine infusion for
mechanically ventilated neonates have shown no beneficialeffects
in the short-term outcomes [74,75]. Longer-term cognitive/ motor
and behavioral outcomes in relation to morphine exposure have
reported mixed results [76,79], with the most recent findings
suggesting a possible neuroprotective effect of pre-emptive
morphine infusion on some aspects of parent report of executive
functions at 8–9 years [80]. However, in that study, morphine was
not found to be beneficial on teacher reports or on individual
testing of child executive functions, thus the results of that study
[80] remain tentative.

Importantly, in the present study, severity of illness on day 1
(SNAP-II) also contributed to lower cortical thickness at school

age. We have recently found, in a separate cohort, that illness
severity of the very preterm neonate during the first 24 hours of life
together with pain-related stress exposure contributed toslower
microstructural development of the corticospinal tract upto term
equivalent age [81]. Together, these findings suggest the
importance of protecting the developing brain during the first
days of life.

During their NICU care, preterm neonates are exposed to
multiple factors that may alter the developing brain, and teasing out
specific pain-related effects is challenging. Prenatal and post-natal
clinical factors and treatments might interact or may lead to similar
end points, which makes them difficult to isolate [82]. Nonetheless,
one strength of the present study is extensive control for multiple
confounding neonatal clinical factors in our statistical modeling.
Unique to the present study of this cohort is the use of constrained
principal component analysis as a first step which allowed an
unbiased examination of the contribution of 7 pre-selectedneonatal
clinical factors on cortical thickness variation in 66 brain regions of
interest. Our group has shown that neonatal pain-related stress
remained a robust predictor of white and gray matter deficits in the
short-term [8]. On brain imaging at school age in the presentstudy,
the number of skin-breaking procedures during NICU care stood
out as the strongest predictor of cortical thickness. Interestingly, we
found that greater number of skin-breaks was highly relatedto

Table 5. GENLIN results for the 21/66 cortical regions significantly associated with neonatal pain-related st ress (adjusted for
clinical confounders).

Infect ion Pain Vent ilat ion Morphine SNAP-II Surgery GA

Brain Regions B p-value B p-value B p-value B p-value B p-value B p-value B p-value

L entorhinal 2 0.34 0.15 2 1.13 0.003{ 0.48 0.11 2 0.06 0.90 2 0.01 0.13 2 0.19 0.29 2 0.01 0.86

L pars orbitalis 0.16 0.34 2 1.03 , 0.0001{ 0.62 0.004 0.33 0.30 2 0.004 0.57 2 0.06 0.64 0.04 0.32

R pars orbitalis 2 0.24 0.27 2 0.85 0.014{ 0.18 0.50 1.08 0.01 2 0.03 0.001{ 2 0.15 0.35 0.03 0.50

R rostral middle frontal 2 0.06 0.63 2 0.65 0.001{ 0.18 0.25 0.67 0.01 2 0.01 0.01 2 0.15 0.11 0.01 0.70

R superior frontal 2 0.06 0.53 2 0.63 , 0.0001{ 0.19 0.14 0.24 0.22 2 0.01 0.02 2 0.06 0.48 0.002 0.92

R supramarginal 2 0.03 0.68 2 0.58 , 0.0001{ 0.24 0.01 0.35 0.02 2 0.004 0.22 2 0.07 0.22 0.04 0.06

L superior frontal 2 0.02 0.84 2 0.56 0.001{ 0.17 0.18 0.25 0.20 2 0.01 0.02 0.02 0.79 0.02 0.40

R postcentral 0.06 0.48 2 0.55 , 0.0001{ 0.20 0.07 0.15 0.36 2 0.002 0.55 2 0.04 0.55 2 0.003 0.89

L precentral 2 0.06 0.51 2 0.54 , 0.0001 { 0.16 0.17 0.09 0.62 2 0.01 0.004 2 0.002 0.98 2 0.01 0.76

R inferior temporal 0.04 0.83 2 0.54 0.006{ 0.21 0.17 0.30 0.18 2 0.01 0.16 2 0.13 0.17 0.02 0.49

L lingual 0.01 0.90 2 0.52 0.003{ 0.10 0.46 0.65 0.002{ 2 0.001 0.82 2 0.10 0.21 0.004 0.89

L rostral middle frontal 2 0.05 0.62 2 0.51 0.001{ 0.09 0.43 0.32 0.07 2 0.01 0.01 2 0.10 0.15 2 0.03 0.24

R superior temporal 0.05 0.57 2 0.49 0.002{ 0.24 0.05 0.47 0.01 2 0.01 0.02 2 0.10 0.16 0.03 0.16

L postcentral 2 0.04 0.61 2 0.47 , 0.0001{ 0.26 0.01 2 0.04 0.80 2 0.01 0.02 2 0.01 0.83 0.000 0.98

L caudal middle frontal 2 0.04 0.69 2 0.43 0.003{ 0.18 0.12 0.25 0.15 2 0.01 0.02 2 0.06 0.39 0.01 0.83

L fusiform 2 0.03 0.75 2 0.42 0.014{ 0.16 0.24 0.23 0.26 2 0.003 0.54 2 0.07 0.41 2 0.004 0.87

L supramarginal 2 0.09 0.32 2 0.42 0.003{ 0.16 0.13 0.08 0.63 2 0.01 0.05 2 0.12 0.07 0.02 0.47

R caudal middle frontal 2 0.13 0.16 2 0.41 0.006{ 0.25 0.03 2 0.02 0.91 2 0.01 0.001{ 0.06 0.40 0.02 0.33

R precentral 0.12 0.14 2 0.40 0.002{ 0.37 , 0.0001{ 2 0.03 0.84 2 0.01 0.004 2 0.06 0.32 0.01 0.59

R superior parietal 0.11 0.17 2 0.39 0.003{ 0.18 0.07 0.16 0.29 2 0.01 0.04 2 0.12 0.06 0.003 0.86

L superior parietal 2 0.00 0.98 2 0.35 0.002{ 0.09 0.32 2 0.09 0.48 2 0.004 0.10 0.01 0.90 0.002 0.92

R, right hemisphere; L, left hemisphere; Infection = number of culture proven infection; Pain = number of skin-breaking procedures exposure; Ventilation = number of
days on mechanical ventilation; Morphine= cumulative daily dose in milligrams adjusted for daily body weight; SNAP-II= score for neonatal acute physiology;
Surgery = number of surgeries; GA= gestational age.
B values are unstandardized. Number of days on mechanical ventilation was winsorized (replaced the outlier value with the closest value within the 6 3 standard
deviation range) [84].
{ Bold text represents statistical significance; p-value threshold for significance adjusted for multiple comparisons with a false discovery rate (FDR) correction set at 5%.
doi:10.1371/journal.pone.0076702.t005
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bilateral thinner cortex of the postcentral region where the
somatosensory cortices lie. Given the known plasticity of the
developing pain system [64], associated sensitization, and findingsof
altered fMRI response to pain at school age [83] it appears highly
possible that repeated early noxious nociceptive stimulation may

cause rewiring of the somatosensory neural circuitry leading to
wider spread detrimental effects on cortical development.Further
studies are needed to examine cortical thickness alterations and
neonatal pain-related stress exposure in relation to pain threshold

Figure 1. Cort ical thickness at age 7 years in relat ion to neonatal pain-related st ress adjusted for clinical confounders. Cortical
thickness in two of the brain regionswhere most significant (p# 0.0001) thinning in relation to neonatal pain-related stress was found. A) Scatter plot
of right hemisphere postcentral cortical thickness in relation to neonatal pain-related stress (number of skin-breaking procedures log transformed)
adjusted for gestational age, severity of illness on day 1, number of culture proven infection, number of days on mechanical ventilation, number of
surgeries, and cumulative daily morphine dose in milligrams adjusted for daily body weight. B) Scatter plot of left hemisphere pars orbitalis cortical
thickness in relation to neonatal pain-related stress (same as in A).
doi:10.1371/journal.pone.0076702.g001
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and specific domains of cognitive and motor functioning at school
age.

This study has limitations in that there could be other
confounding factors associated with early pain-related stress
exposure and/ or prematurity, and a relatively limited sample
size. Moreover, the lack of a control group of term born children is
a limitation of this study. Advances in prenatal ultrasoundhave
permitted reliable dating of GA. Currently GA is viewed as the
single best index of physiological maturity in the preterm newborn,
and is thus more widely used as a predictor of long-term outcomes
than BW [2,7]. In contrast, BW reflects a combination of
immaturity and potential growth retardation. Examining pain-
related stress in infants born small for gestational age (i.e. lower
BW than expected relative to GA) in relation to long-term brain
development remains to be examined in future studies. Important
strengths of our study are that we controlled for seven neonatal
factors that capture the most salient neonatal clinical features, the
strict exclusion criteria, and a false discovery rate of 5%,thus a
conservative approach that reduced the chance of finding
significant relationships between neonatal pain-relatedstress and
cortical thickness at school age.

Conclusion

In very preterm children without severe brain injury in the
newborn period, and free from major sensory, motor or neurode-
velopmental impairments, we showed that greater exposure to

neonatal pain-related stress was associated with thinner cortex in
multiple regions at school age, independent of other neonatal risk
factors. Important to further advancing our understandingof the
relationship between pain-related stress and alterationsin cortical
development will be the examination of corticospinal tracts, white
matter and sub-cortical gray matter structures in school-age
children born very preterm. Finally, it remains for future studies
to evaluate to what extent these pain-related stress brain alterations
are related to cognitive, motor, and behavioral outcomes inthese
children.
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