79 research outputs found

    The glyceraldehyde-3-phosphate dehydrogenase gene of Moniliophthoraperniciosa, the causal agent of witches' broom disease of Theobroma cacao

    Get PDF
    This report describes the cloning, sequence and expression analysis of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene of Moniliophthora perniciosa, the most important pathogen of cocoa in Brazil. Southern blot analysis revealed the presence of a single copy of the GAPDH gene in the M. perniciosa genome (MpGAPDH). The complete MpGAPDH coding sequence contained 1,461 bp with eight introns that were conserved in the GAPDH genes of other basidiomycete species. The cis-elements in the promoter region of the MpGAPDH gene were similar to those of other basidiomycetes. Likewise, the MpGAPDH gene encoded a putative 339 amino acid protein that shared significant sequence similarity with other GAPDH proteins in fungi, plants, and metazoans. Phylogenetic analyses clustered the MPGAPDH protein with other homobasidiomycete fungi of the family Tricholomataceae. Expression analysis of the MpGAPDH gene by real-time PCR showed that this gene was more expressed (~1.3X) in the saprotrophic stage of this hemibiotrophic plant pathogen than in the biotrophic stage when grown in cacao extracts

    Early markers for myocardial ischemia and sudden cardiac death.

    Get PDF
    The post-mortem diagnosis of acute myocardial ischemia remains a challenge for both clinical and forensic pathologists. We performed an experimental study (ligation of left anterior descending coronary artery in rats) in order to identify early markers of myocardial ischemia, to further apply to forensic and clinical pathology in cases of sudden cardiac death. Using immunohistochemistry, Western blots, and gene expression analyses, we investigated a number of markers, selected among those which are currently used in emergency departments to diagnose myocardial infarction and those which are under investigation in basic research and autopsy pathology studies on cardiovascular diseases. The study was performed on 44 adult male Lewis rats, assigned to three experimental groups: control, sham-operated, and operated. The durations of ischemia ranged between 5 min and 24 h. The investigated markers were troponins I and T, myoglobin, fibronectin, C5b-9, connexin 43 (dephosphorylated), JunB, cytochrome c, and TUNEL staining. The earliest expressions (≀30 min) were observed for connexin 43, JunB, and cytochrome c, followed by fibronectin (≀1 h), myoglobin (≀1 h), troponins I and T (≀1 h), TUNEL (≀1 h), and C5b-9 (≀2 h). By this investigation, we identified a panel of true early markers of myocardial ischemia and delineated their temporal evolution in expression by employing new technologies for gene expression analysis, in addition to traditional and routine methods (such as histology and immunohistochemistry). Moreover, for the first time in the autopsy pathology field, we identified, by immunohistochemistry, two very early markers of myocardial ischemia: dephosphorylated connexin 43 and JunB

    Macrophage signaling in HIV-1 infection

    Get PDF
    The human immunodeficiency virus-1 (HIV-1) is a member of the lentivirus genus. The virus does not rely exclusively on the host cell machinery, but also on viral proteins that act as molecular switches during the viral life cycle which play significant functions in viral pathogenesis, notably by modulating cell signaling. The role of HIV-1 proteins (Nef, Tat, Vpr, and gp120) in modulating macrophage signaling has been recently unveiled. Accessory, regulatory, and structural HIV-1 proteins interact with signaling pathways in infected macrophages. In addition, exogenous Nef, Tat, Vpr, and gp120 proteins have been detected in the serum of HIV-1 infected patients. Possibly, these proteins are released by infected/apoptotic cells. Exogenous accessory regulatory HIV-1 proteins are able to enter macrophages and modulate cellular machineries including those that affect viral transcription. Furthermore HIV-1 proteins, e.g., gp120, may exert their effects by interacting with cell surface membrane receptors, especially chemokine co-receptors. By activating the signaling pathways such as NF-kappaB, MAP kinase (MAPK) and JAK/STAT, HIV-1 proteins promote viral replication by stimulating transcription from the long terminal repeat (LTR) in infected macrophages; they are also involved in macrophage-mediated bystander T cell apoptosis. The role of HIV-1 proteins in the modulation of macrophage signaling will be discussed in regard to the formation of viral reservoirs and macrophage-mediated T cell apoptosis during HIV-1 infection

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Complex mechanisms for c-fos and c-jun degradation

    No full text
    c-fos and c-jun proto-oncogenes have originally been found in mutated forms in murine and avian oncogenic retroviruses. They both define multigenic families of transcription factors. Both c-jun and c-fos proteins are metabolically unstable. In vivo and in vitro work by various groups suggests that multiple proteolytic machineries, including the lysosomes, the proteasome and the ubiquitous calpains, may participate in the destruction of c-fos and c-jun. The relative contribution of each pathway is far from being known and it cannot be excluded that it varies according to the cell context and/or the physiological conditions. It has been demonstrated that, in certain occurrences, the degradation of both c-fos and c-jun by the proteasome in vivo involves the ubiquitin pathway. However, the possibility that proteasomal degradation can also occur in a manner independent of the E1 enzyme of the ubiquitin cycle remains an open issue

    Complex mechanisms for c-fos and c-jun degradation

    No full text
    c-fos and c-jun proto-oncogenes have originally been found in mutated forms in murine and avian oncogenic retroviruses. They both define multigenic families of transcription factors. Both c-jun and c-fos proteins are metabolically unstable. In vivo and in vitro work by various groups suggests that multiple proteolytic machineries, including the lysosomes, the proteasome and the ubiquitous calpains, may participate in the destruction of c-fos and c-jun. The relative contribution of each pathway is far from being known and it cannot be excluded that it varies according to the cell context and/or the physiological conditions. It has been demonstrated that, in certain occurrences, the degradation of both c-fos and c-jun by the proteasome in vivo involves the ubiquitin pathway. However, the possibility that proteasomal degradation can also occur in a manner independent of the E1 enzyme of the ubiquitin cycle remains an open issue

    High-resolution live-cell imaging reveals novel cyclin A2 degradation foci involving autophagy

    No full text
    Cyclin A2 is a key player in the regulation of the cell cycle. Its degradation in mid-mitosis relies on the ubiquitin-proteasome system (UPS). Using high-resolution microscopic imaging, we find that cyclin A2 persists beyond metaphase. Indeed, we identify a novel cyclin-A2-containing compartment that forms dynamic foci. Forster (or fluorescence) resonance energy transfer (FRET) and fluorescence lifetime imaging microscopy (FLIM) analyses show that cyclin A2 ubiquitylation takes place predominantly in these foci before spreading throughout the cell. Moreover, inhibition of autophagy in proliferating cells induces the stabilisation of a subset of cyclin A2, whereas induction of autophagy accelerates the degradation of cyclin A2, thus showing that autophagy is a novel regulator of cyclin A2 degradation
    • 

    corecore