40 research outputs found
Chlorin e6 – polyvinylpyrrolidone mediated photosensitization is effective against human non-small cell lung carcinoma compared to small cell lung carcinoma xenografts
10.1186/1471-2210-7-15BMC Pharmacology7-BPMH
Antimicrobial and antioxidant activities of Cortex Magnoliae Officinalis and some other medicinal plants commonly used in South-East Asia
<p>Abstract</p> <p>Background</p> <p>Eight medicinal plants were tested for their antimicrobial and antioxidant activities. Different extraction methods were also tested for their effects on the bioactivities of the medicinal plants.</p> <p>Methods</p> <p>Eight plants, namely <it>Herba Polygonis Hydropiperis </it>(<it>Laliaocao</it>), <it>Folium Murraya Koenigii </it>(<it>Jialiye</it>), <it>Rhizoma Arachis Hypogea </it>(<it>Huashenggen</it>), <it>Herba Houttuyniae </it>(<it>Yuxingcao</it>), <it>Epipremnum pinnatum </it>(<it>Pashulong</it>), <it>Rhizoma Typhonium Flagelliforme </it>(<it>Laoshuyu</it>), <it>Cortex Magnoliae Officinalis </it>(<it>Houpo</it>) and <it>Rhizoma Imperatae </it>(<it>Baimaogen</it>) were investigated for their potential antimicrobial and antioxidant properties.</p> <p>Results</p> <p>Extracts of <it>Cortex Magnoliae Officinalis </it>had the strongest activities against <it>M. Smegmatis</it>, <it>C. albicans</it>, <it>B. subtilis </it>and <it>S. aureus</it>. Boiled extracts of <it>Cortex Magnoliae Officinalis</it>, <it>Folium Murraya Koenigii, Herba Polygonis Hydropiperis </it>and <it>Herba Houttuyniae </it>demonstrated greater antioxidant activities than other tested medicinal plants.</p> <p>Conclusion</p> <p>Among the eight tested medicinal plants, <it>Cortex Magnoliae Officinalis </it>showed the highest antimicrobial and antioxidant activities. Different methods of extraction yield different spectra of bioactivities.</p
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
In-vivo optical detection of cancer using chlorin e6 – polyvinylpyrrolidone induced fluorescence imaging and spectroscopy
<p>Abstract</p> <p>Background</p> <p>Photosensitizer based fluorescence imaging and spectroscopy is fast becoming a promising approach for cancer detection. The purpose of this study was to examine the use of the photosensitizer chlorin e6 (Ce6) formulated in polyvinylpyrrolidone (PVP) as a potential exogenous fluorophore for fluorescence imaging and spectroscopic detection of human cancer tissue xenografted in preclinical models as well as in a patient.</p> <p>Methods</p> <p>Fluorescence imaging was performed on MGH human bladder tumor xenografted on both the chick chorioallantoic membrane (CAM) and the murine model using a fluorescence endoscopy imaging system. In addition, fiber optic based fluorescence spectroscopy was performed on tumors and various normal organs in the same mice to validate the macroscopic images. In one patient, fluorescence imaging was performed on angiosarcoma lesions and normal skin in conjunction with fluorescence spectroscopy to validate Ce6-PVP induced fluorescence visual assessment of the lesions.</p> <p>Results</p> <p>Margins of tumor xenografts in the CAM model were clearly outlined under fluorescence imaging. Ce6-PVP-induced fluorescence imaging yielded a specificity of 83% on the CAM model. In mice, fluorescence intensity of Ce6-PVP was higher in bladder tumor compared to adjacent muscle and normal bladder. Clinical results confirmed that fluorescence imaging clearly captured the fluorescence of Ce6-PVP in angiosarcoma lesions and good correlation was found between fluorescence imaging and spectral measurement in the patient.</p> <p>Conclusion</p> <p>Combination of Ce6-PVP induced fluorescence imaging and spectroscopy could allow for optical detection and discrimination between cancer and the surrounding normal tissues. Ce6-PVP seems to be a promising fluorophore for fluorescence diagnosis of cancer.</p
Pharmacodynamic Modeling of Anti-Cancer Activity of Tetraiodothyroacetic Acid in a Perfused Cell Culture System
Unmodified or as a poly[lactide-co-glycolide] nanoparticle, tetraiodothyroacetic acid (tetrac) acts at the integrin αvβ3 receptor on human cancer cells to inhibit tumor cell proliferation and xenograft growth. To study in vitro the pharmacodynamics of tetrac formulations in the absence of and in conjunction with other chemotherapeutic agents, we developed a perfusion bellows cell culture system. Cells were grown on polymer flakes and exposed to various concentrations of tetrac, nano-tetrac, resveratrol, cetuximab, or a combination for up to 18 days. Cells were harvested and counted every one or two days. Both NONMEM VI and the exact Monte Carlo parametric expectation maximization algorithm in S-ADAPT were utilized for mathematical modeling. Unmodified tetrac inhibited the proliferation of cancer cells and did so with differing potency in different cell lines. The developed mechanism-based model included two effects of tetrac on different parts of the cell cycle which could be distinguished. For human breast cancer cells, modeling suggested a higher sensitivity (lower IC50) to the effect on success rate of replication than the effect on rate of growth, whereas the capacity (Imax) was larger for the effect on growth rate. Nanoparticulate tetrac (nano-tetrac), which does not enter into cells, had a higher potency and a larger anti-proliferative effect than unmodified tetrac. Fluorescence-activated cell sorting analysis of harvested cells revealed tetrac and nano-tetrac induced concentration-dependent apoptosis that was correlated with expression of pro-apoptotic proteins, such as p53, p21, PIG3 and BAD for nano-tetrac, while unmodified tetrac showed a different profile. Approximately additive anti-proliferative effects were found for the combinations of tetrac and resveratrol, tetrac and cetuximab (Erbitux), and nano-tetrac and cetuximab. Our in vitro perfusion cancer cell system together with mathematical modeling successfully described the anti-proliferative effects over time of tetrac and nano-tetrac and may be useful for dose-finding and studying the pharmacodynamics of other chemotherapeutic agents or their combinations
Pooled analysis of who surgical safety checklist use and mortality after emergency laparotomy
Background: The World Health Organization (WHO) Surgical Safety Checklist has fostered safe practice for 10 years, yet its place in emergency surgery has not been assessed on a global scale. The aim of this study was to evaluate reported checklist use in emergency settings and examine the relationship with perioperative mortality in patients who had emergency laparotomy. Methods: In two multinational cohort studies, adults undergoing emergency laparotomy were compared with those having elective gastrointestinal surgery. Relationships between reported checklist use and mortality were determined using multivariable logistic regression and bootstrapped simulation. Results: Of 12 296 patients included from 76 countries, 4843 underwent emergency laparotomy. After adjusting for patient and disease factors, checklist use before emergency laparotomy was more common in countries with a high Human Development Index (HDI) (2455 of 2741, 89⋅6 per cent) compared with that in countries with a middle (753 of 1242, 60⋅6 per cent; odds ratio (OR) 0⋅17, 95 per cent c.i. 0⋅14 to 0⋅21, P < 0⋅001) or low (363 of 860, 42⋅2 percent; OR 0⋅08, 0⋅07 to 0⋅10, P < 0⋅001) HDI. Checklist use was less common in elective surgery than for emergency laparotomy in high-HDI countries (risk difference −9⋅4 (95 per cent c.i. −11⋅9 to −6⋅9) per cent; P < 0⋅001), but the relationship was reversed in low-HDI countries (+12⋅1 (+7⋅0 to +17⋅3) per cent; P < 0⋅001). In multivariable models, checklist use was associated with a lower 30-day perioperative mortality (OR 0⋅60, 0⋅50 to 0⋅73; P < 0⋅001). The greatest absolute benefit was seen for emergency surgery in low-and middle-HDI countries. Conclusion: Checklist use in emergency laparotomy was associated with a significantly lower perioperative mortality rate. Checklist use in low-HDI countries was half that in high-HDI countries
GWTC-2.1: Deep extended catalog of compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run
The second Gravitational-Wave Transient Catalog, GWTC-2, reported on 39 compact binary coalescences observed by the Advanced LIGO and Advanced Virgo detectors between 1 April 2019 15 ∶ 00 UTC and 1 October 2019 15 ∶ 00 UTC. Here, we present GWTC-2.1, which reports on a deeper list of candidate events observed over the same period. We analyze the final version of the strain data over this period with improved calibration and better subtraction of excess noise, which has been publicly released. We employ three matched-filter search pipelines for candidate identification, and estimate the probability of astrophysical origin for each candidate event. While GWTC-2 used a false alarm rate threshold of 2 per year, we include in GWTC-2.1, 1201 candidates that pass a false alarm rate threshold of 2 per day. We calculate the source properties of a subset of 44 high-significance candidates that have a probability of astrophysical origin greater than 0.5. Of these candidates, 36 have been reported in GWTC-2. We also calculate updated source properties for all binary black hole events previously reported in GWTC-1. If the eight additional high-significance candidates presented here are astrophysical, the mass range of events that are unambiguously identified as binary black holes (both objects ≥ 3 M⊙ ) is increased compared to GWTC-2, with total masses from ∼ 14 M ⊙ for GW190924_021846 to ∼ 182 M⊙ for GW190426_190642. Source properties calculated using our default prior suggest that the primary components of two new candidate events (GW190403_051519 and GW190426_190642) fall in the mass gap predicted by pair-instability supernova theory. We also expand the population of binaries with significantly asymmetric mass ratios reported in GWTC-2 by an additional two events (the mass ratio is less than 0.65 and 0.44 at 90% probability for GW190403_051519 and GW190917_114630 respectively), and find that two of the eight new events have effective inspiral spins χeff > 0 (at 90% credibility), while no binary is consistent with χeff < 0 at the same significance. We provide updated estimates for rates of binary black hole and binary neutron star coalescence in the local Universe
All-sky, all-frequency directional search for persistent gravitational waves from Advanced LIGO’s and Advanced Virgo’s first three observing runs
We present the first results from an all-sky all-frequency (ASAF) search for
an anisotropic stochastic gravitational-wave background using the data from the
first three observing runs of the Advanced LIGO and Advanced Virgo detectors.
Upper limit maps on broadband anisotropies of a persistent stochastic
background were published for all observing runs of the LIGO-Virgo detectors.
However, a broadband analysis is likely to miss narrowband signals as the
signal-to-noise ratio of a narrowband signal can be significantly reduced when
combined with detector output from other frequencies. Data folding and the
computationally efficient analysis pipeline, {\tt PyStoch}, enable us to
perform the radiometer map-making at every frequency bin. We perform the search
at 3072 {\tt{HEALPix}} equal area pixels uniformly tiling the sky and in every
frequency bin of width ~Hz in the range ~Hz, except for bins
that are likely to contain instrumental artefacts and hence are notched. We do
not find any statistically significant evidence for the existence of narrowband
gravitational-wave signals in the analyzed frequency bins. Therefore, we place
confidence upper limits on the gravitational-wave strain for each
pixel-frequency pair, the limits are in the range . In addition, we outline a method to identify candidate
pixel-frequency pairs that could be followed up by a more sensitive (and
potentially computationally expensive) search, e.g., a matched-filtering-based
analysis, to look for fainter nearly monochromatic coherent signals. The ASAF
analysis is inherently independent of models describing any spectral or spatial
distribution of power. We demonstrate that the ASAF results can be
appropriately combined over frequencies and sky directions to successfully
recover the broadband directional and isotropic results
Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study
Background Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p<0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p<0·001). Interpretation Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication. Funding DFID-MRC-Wellcome Trust Joint Global Health Trial Development Grant, National Institute of Health Research Global Health Research Unit Grant
Search for gravitational waves associated with gamma-ray bursts detected by Fermi and Swift during the LIGO–Virgo run O3b
We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC–2020 March 27 17:00 UTC). We conduct two independent searches: a generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate
