14 research outputs found

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Important Role for Toll-Like Receptor 9 in Host Defense against Meningococcal Sepsis▿

    No full text
    Neisseria meningitidis is a leading cause of meningitis and sepsis. The pathogenesis of meningococcal disease is determined by both bacterial virulence factors and the host inflammatory response. Toll-like receptors (TLRs) are prominent activators of the inflammatory response, and TLR2, -4, and -9 have been reported to be involved in the host response to N. meningitidis. While TLR4 has been suggested to play an important role in early containment of infection, the roles of TLR2 and TLR9 in meningococcal disease are not well described. Using a model for meningococcal sepsis, we report that TLR9−/− mice displayed reduced survival and elevated levels of bacteremia compared to wild-type mice. In contrast, TLR2−/− mice controlled the infection in a manner comparable to that of wild-type mice. TLR9 deficiency was also associated with reduced bactericidal activity in vitro, which was accompanied by reduced production of nitric oxide by TLR9-deficient macrophages. Interestingly, TLR9−/− mice recruited more macrophages to the bloodstream than wild-type mice and produced elevated levels of cytokines at late time points during infection. At the cellular level, activation of signal transduction and induction of cytokine gene expression were independent of TLR2 or TLR9 in macrophages and conventional dendritic cells. In contrast, plasmacytoid dendritic cells relied entirely on TLR9 to induce these activities. Thus, our data demonstrate an important role for TLR9 in host defense against N. meningitidis

    Immune escape by Epstein-Barr virus associated malignancies

    Full text link
    Persistent Epstein-Barr virus (EBV) infection remains asymptomatic in the majority of virus carriers, despite the potent growth transforming potential of this virus. The increased frequency of EBV associated B cell lymphomas in immune compromised individuals suggests that tumor-free chronic infection with this virus is in part due to immune control. Here we discuss the evidence that loss of selective components of EBV specific immunity might contribute to EBV associated malignancies, like nasopharyngeal carcinoma, Burkitt's and Hodgkin's lymphoma, in otherwise immune competent patients. Furthermore, we discuss how current vaccine approaches against EBV might be able to target these selective deficiencies

    Quetiapine versus aripiprazole in children and adolescents with psychosis - protocol for the randomised, blinded clinical Tolerability and Efficacy of Antipsychotics (TEA) trial

    Get PDF
    BACKGROUND: The evidence for choices between antipsychotics for children and adolescents with schizophrenia and other psychotic disorders is limited. The main objective of the Tolerability and Efficacy of Antipsychotics (TEA) trial is to compare the benefits and harms of quetiapine versus aripiprazole in children and adolescents with psychosis in order to inform rational, effective and safe treatment selections. METHODS/DESIGN: The TEA trial is a Danish investigator-initiated, independently funded, multi-centre, randomised, blinded clinical trial. Based on sample size estimation, 112 patients aged 12-17 years with psychosis, antipsychotic-naïve or treated for a limited period are, 1:1 randomised to a 12- week, double-blind intervention with quetiapine versus aripiprazole. Effects on psychopathology, cognition, health-related quality of life, and adverse events are assessed 2, 4, and 12 weeks after randomisation. The primary outcome is change in the positive symptom score of the Positive and Negative Syndrome Scale. The recruitment period is 2010-2014. DISCUSSION: Antipsychotics are currently the only available pharmacologic treatments for psychotic disorders. However, information about head-to-head differences in efficacy and tolerability of antipsychotics are scarce in children and adolescents. The TEA trial aims at expanding the evidence base for the use of antipsychotics in early onset psychosis in order to inform more rational treatment decisions in this vulnerable population. Here, we account for the trial design, address methodological challenges, and discuss the estimation of sample size. TRIAL REGISTRATION: ClinicalTrials.gov: NCT0111901

    Inborn errors in RNA polymerase III underlie severe varicella zoster virus infections

    Get PDF
    Varicella zoster virus (VZV) typically causes chickenpox upon primary infection. In rare cases, VZV can give rise to life-threatening disease in otherwise healthy people, but the immunological basis for this remains unexplained. We report 4 cases of acute severe VZV infection affecting the central nervous system or the lungs in unrelated, otherwise healthy children who are heterozygous for rare missense mutations in POLR3A (one patient), POLR3C (one patient), or both (two patients). POLR3A and POLR3C encode subunits of RNA polymerase III. Leukocytes from all 4 patients tested exhibited poor IFN induction in response to synthetic or VZV-derived DNA. Moreover, leukocytes from 3 of the patients displayed defective IFN production upon VZV infection and reduced control of VZV replication. These phenotypes were rescued by transduction with relevant WT alleles. This work demonstrates that monogenic or digenic POLR3A and POLR3C deficiencies confer increased susceptibility to severe VZV disease in otherwise healthy children, providing evidence for an essential role of a DNA sensor in human immunity

    TRIM68 negatively regulates IFN-β production by degrading TRK fused gene, a novel driver of IFN-β downstream of anti-viral detection systems.

    Get PDF
    In recent years members of the tripartite motif-containing (TRIM) family of E3 ubiquitin ligases have been shown to both positively and negatively regulate viral defence and as such are emerging as compelling targets for modulating the anti-viral immune response. In this study we identify TRIM68, a close homologue of TRIM21, as a novel regulator of Toll-like receptor (TLR)- and RIG-I-like receptor (RLR)-driven type I IFN production. Proteomic analysis of TRIM68-containing complexes identified TRK-fused gene (TFG) as a potential TRIM68 target. Overexpression of TRIM68 and TFG confirmed their ability to associate, with TLR3 stimulation appearing to enhance the interaction. TFG is a known activator of NF-κB via its ability to interact with inhibitor of NF-κB kinase subunit gamma (IKK-γ) and TRAF family member-associated NF-κB activator (TANK). Our data identifies a novel role for TFG as a positive regulator of type I IFN production and suggests that TRIM68 targets TFG for lysosomal degradation, thus turning off TFG-mediated IFN-β production. Knockdown of TRIM68 in primary human monocytes resulted in enhanced levels of type I IFN and TFG following poly(I:C) treatment. Thus TRIM68 targets TFG, a novel regulator of IFN production, and in doing so turns off and limits type I IFN production in response to anti-viral detection systems

    Westem Language Publications on Religions in China, 1990-1994

    No full text
    corecore