904 research outputs found

    Cigarette smoke induces β2-integrin-dependent neutrophil migration across human endothelium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cigarette smoking induces peripheral inflammatory responses in all smokers and is the major risk factor for neutrophilic lung disease such as chronic obstructive pulmonary disease. The aim of this study was to investigate the effect of cigarette smoke on neutrophil migration and on β<sub>2</sub>-integrin activation and function in neutrophilic transmigration through endothelium.</p> <p>Methods and results</p> <p>Utilizing freshly isolated human PMNs, the effect of cigarette smoke on migration and β<sub>2</sub>-integrin activation and function in neutrophilic transmigration was studied. In this report, we demonstrated that cigarette smoke extract (CSE) dose dependently induced migration of neutrophils <it>in vitro</it>. Moreover, CSE promoted neutrophil adherence to fibrinogen. Using functional blocking antibodies against CD11b and CD18, it was demonstrated that Mac-1 (CD11b/CD18) is responsible for the cigarette smoke-induced firm adhesion of neutrophils to fibrinogen. Furthermore, neutrophils transmigrated through endothelium by cigarette smoke due to the activation of β<sub>2</sub>-integrins, since pre-incubation of neutrophils with functional blocking antibodies against CD11b and CD18 attenuated this transmigration.</p> <p>Conclusion</p> <p>This is the first study to describe that cigarette smoke extract induces a direct migratory effect on neutrophils and that CSE is an activator of β<sub>2</sub>-integrins on the cell surface. Blocking this activation of β<sub>2</sub>-integrins might be an important target in cigarette smoke induced neutrophilic diseases.</p

    Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

    Get PDF
    Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death

    PDE 7 Inhibitors: New Potential Drugs for the Therapy of Spinal Cord Injury

    Get PDF
    BACKGROUND: Primary traumatic mechanical injury to the spinal cord (SCI) causes the death of a number of neurons that to date can neither be recovered nor regenerated. During the last years our group has been involved in the design, synthesis and evaluation of PDE7 inhibitors as new innovative drugs for several neurological disorders. Our working hypothesis is based on two different facts. Firstly, neuroinflammation is modulated by cAMP levels, thus the key role for phosphodiesterases (PDEs), which hydrolyze cAMP, is undoubtedly demonstrated. On the other hand, PDE7 is expressed simultaneously on leukocytes and on the brain, highlighting the potential crucial role of PDE7 as drug target for neuroinflammation. METHODOLOGY/PRINCIPAL FINDINGS: Here we present two chemically diverse families of PDE7 inhibitors, designed using computational techniques such as virtual screening and neuronal networks. We report their biological profile and their efficacy in an experimental SCI model induced by the application of vascular clips (force of 24 g) to the dura via a four-level T5-T8 laminectomy. We have selected two candidates, namely S14 and VP1.15, as PDE7 inhibitors. These compounds increase cAMP production both in macrophage and neuronal cell lines. Regarding drug-like properties, compounds were able to cross the blood brain barrier using parallel artificial membranes (PAMPA) methodology. SCI in mice resulted in severe trauma characterized by edema, neutrophil infiltration, and production of a range of inflammatory mediators, tissue damage, and apoptosis. Treatment of the mice with S14 and VP1.15, two PDE7 inhibitors, significantly reduced the degree of spinal cord inflammation, tissue injury (histological score), and TNF-α, IL-6, COX-2 and iNOS expression. CONCLUSIONS/SIGNIFICANCE: All these data together led us to propose PDE7 inhibitors, and specifically S14 and VP1.15, as potential drug candidates to be further studied for the treatment of SCI

    Diagnostic algorithm, prognostic factors and surgical treatment of metastatic cancer diseases of the long bones and spine

    Get PDF
    Oncological management of skeletal metastases has changed dramatically in the last few decades. A significant number of patients survive for many years with their metastases.Surgeons are more active and the technical repertoire is broader, from plates to intramedullary devices to (tumour) endoprostheses.The philosophy of treatment should be different in the case of a trauma-related fracture and a pathological fracture. A proper algorithm for establishing a diagnosis and evaluation of prognostic factors helps in planning the surgical intervention.The aim of palliative surgery is usually to eliminate pain and to allow the patient to regain his/her mobility as well as to improve the quality of life through minimally invasive techniques using life-long durable devices.In a selected group of patients with an oncologically controlled primary tumour site and a solitary bone metastasis with positive prognostic factors, which meet the criteria for radical excision (approximately 10% to 15% of the cases), a promising three to five years of survival may be achieved, especially in cases of metastases from breast and kidney cancer.Spinal metastases require meticulous evaluation because decisions on treatment mostly depend on the tumour type, segmental stability, the patient's symptoms and general state of health.Advanced radiotherapy combined with minimally invasive surgical techniques (minimally invasive stabilisation and separation surgery) provides durable local control with a low complication rate in a number of patients. Cite this article: EFORT Open Rev 2017;2:372-381

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Transmembrane signalling in eukaryotes: a comparison between higher and lower eukaryotes

    Full text link

    Alignment of the ALICE Inner Tracking System with cosmic-ray tracks

    Get PDF
    37 pages, 15 figures, revised version, accepted by JINSTALICE (A Large Ion Collider Experiment) is the LHC (Large Hadron Collider) experiment devoted to investigating the strongly interacting matter created in nucleus-nucleus collisions at the LHC energies. The ALICE ITS, Inner Tracking System, consists of six cylindrical layers of silicon detectors with three different technologies; in the outward direction: two layers of pixel detectors, two layers each of drift, and strip detectors. The number of parameters to be determined in the spatial alignment of the 2198 sensor modules of the ITS is about 13,000. The target alignment precision is well below 10 micron in some cases (pixels). The sources of alignment information include survey measurements, and the reconstructed tracks from cosmic rays and from proton-proton collisions. The main track-based alignment method uses the Millepede global approach. An iterative local method was developed and used as well. We present the results obtained for the ITS alignment using about 10^5 charged tracks from cosmic rays that have been collected during summer 2008, with the ALICE solenoidal magnet switched off.Peer reviewe

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Measurement of the W±Z boson pair-production cross section in pp collisions at √s=13TeV with the ATLAS detector

    Get PDF
    published_or_final_versio

    Anatomy of the sign-problem in heavy-dense QCD

    Get PDF
    QCD at finite densities of heavy quarks is investigated using the density-of-states method. The phase factor expectation value of the quark determinant is calculated to unprecedented precision as a function of the chemical potential. Results are validated using those from a reweighting approach where the latter can produce a significant signalto-noise ratio. We confirm the particle–hole symmetry at low temperatures, find a strong sign problem at intermediate values of the chemical potential, and an inverse Silver Blaze feature for chemical potentials close to the onset value: here, the phase-quenched theory underestimates the density of the full theory
    corecore