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Abstract QCD at finite densities of heavy quarks is inves-
tigated using the density-of-states method. The phase factor
expectation value of the quark determinant is calculated to
unprecedented precision as a function of the chemical poten-
tial. Results are validated using those from a reweighting
approach where the latter can produce a significant signal-
to-noise ratio. We confirm the particle–hole symmetry at low
temperatures, find a strong sign problem at intermediate val-
ues of the chemical potential, and an inverse Silver Blaze
feature for chemical potentials close to the onset value: here,
the phase-quenched theory underestimates the density of the
full theory.

1 Introduction

Monte Carlo simulations of quantum chromo dynamics
(QCD) at finite baryon densities would provide direct insights
into cold, but dense matter as it occurs in compact stars.
They would also trigger the evolution of effective theo-
ries. To date, there are numerous proposals for such the-
ories and models. Those rise from exact solvable models
that mimic certain aspects of QCD (see the Gross–Neveu
model [1,2]) or are motivated by certain limits of QCD:
The limit of many colours has led to the proposal of the
“quarkyonic phase” [3,4]. Reducing the gluon sector to the
essence of the centre elements has revealed that “centre-
dressed quarks” obey Bose statistics and can undergo Bose–
Einstein condensation in the dense, but still confined phase
(see “Fermi–Einstein condensation” in [5]). Since heavy-
ion collision experiments probe matter at high temperatures,
but—at best—at moderate densities, the essential input for
understanding cold-dense baryonic matter has to come from
first principles computer simulations. Standard Monte Carlo
simulations, however, fail since the Gibbs factor is complex at
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non-vanishing chemical potentials and, thus, lacks the inter-
pretation of a probabilistic weight for lattice configurations.
This problem does not exclusively relate to dense QCD, but
is generic for dense matter quantum field theories. It has
become known as the notorious “sign-problem” over the last
three decades.

The recent years, however, have seen significant
progress in the numerical studies of complex action systems,
both with Monte Carlo methods and techniques that do not
rely on importance sampling. Among the most promising
methods are the complexification of the fields in a Langevin
based approach [6,7], worm or flux algorithms [8,9] to simu-
late the dual theory if it happens that this theory is real [10–13]
and the use of techniques that explicitly exploit the cancel-
lations of classes of fields [14].

Among the alternatives to conventional Monte Carlo sam-
pling, the so-called density-of-states simulations (for early
results for the gauge and spin systems see [15,16]): this
approach performs Monte Carlo updates according to the
number of states for a given (complex) action and employs the
pioneering techniques introduced by Wang and Landau [17]
to refine the density-of-states during simulation. Once this
quantity has been determined, the partition function and
derived expectation values of observables can be computed
semi-analytically by integrating the density-of-states with the
appropriate (potentially complex) Boltzmann weight. More
recently, a Wang–Landau type method originally introduced
for continuous systems has been put forward in [18–20]. This
method features an exponential error suppression and allows
one to calculate the density-of-states over many orders of
magnitude [21]. At least for the Z3 spin model at finite den-
sities, the achieved precision of the density-of-states has been
high enough to solve the strong sign problem by direct inte-
gration [22].

Heavy-dense QCD (HDQCD) emerges in the limit in
which the quark mass and chemical potential are simulta-
neously large [23,24]. This theory has a non-trivial phase
diagram in the plane of temperature and chemical poten-
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tial, which qualitatively agrees with the one expected for real
QCD: e.g., at vanishing chemical potential, there is a thermal
deconfinement transition as the temperature is increased with
the transition being first order for very heavy quarks and a
crossover for slightly lighter but still heavy quarks [25]. The
gluonic part of HDQCD is given by the SU(3) Yang–Mills
theory, and a dualisation that could leave us with a real theory
at presence of a chemical potentials is not known. So far, this
rules out any flux or worm-type algorithms and makes it a sig-
nificant testing ground for the density-of-states techniques.
We point out that HDQCD has been simulated with com-
plex Langevin method providing results for bench-marking
our findings [25,26]. We also refer the reader to [27] for a
recent study of HDQCD using reweighting and a mean-field
approximation.

In this paper, we study HDQCD with the density-of-states
approach detailed in [22]. The theory is real in the limit of
vanishing and of large chemical potentials and for chemi-
cal potential equalling the heavy quark mass. Although the
phase-quenched approximation sketches a qualitatively cor-
rect picture for this reason, we do find a strong sign problem
for chemical potentials close to the mass threshold.

2 Heavy-dense QCD and the generalised
density-of-states approach

2.1 HDQCD: definitions and features

The partition function of QCD with the quarks field inte-
grated out is a functional integral over SU(3) unitary matrices
only:

Z(μ) =
∫

DUμ exp{βSYM[U ]}DetM(μ), (1)

where we use the Wilson formulation of the Yang–Mills
action:

SYM[U ] = 1

3

∑
x,μ>ν

Retr
[
Uμ(x)Uν(x + μ)

×U †
μ(x + ν)U †

ν (x)
]
. (2)

The so-called quark determinant possesses the property

(DetM(μ))∗ = DetM(−μ), (μ ∈ R), (3)

which implies that QCD at vanishing chemical potential, i.e.,
μ = 0, is a real theory. For large quark mass m and simul-
taneously large chemical potential μ, the quark determinant
factorises into [23–27]

DetM(μ) =
∏
x

det2
(

1 + heμ/T P(x)
)

×det2
(

1 + he−μ/T P†(x)
)

, (4)

where T = 1/Nta is the temperature with a the lattice spac-
ing and Nt the number of lattice points in temporal direction.
The parameter h is related to the quark hopping parameter
κ and P(x) is the Polyakov line starting at position x and
winding around the torus in temporal direction:

h = (2κ)Nt , P(x) =
Nt∏
t=1

U4(x, t). (5)

The determinants at the right hand side of (3) extend over
colour indices only. Introducing the heavy quark mass m by

ma = − ln(2κ), (6)

we find that h = exp{−m/T }, yielding for (4)

DetM(μ) =
∏
x

det2(1 + e(μ−m)/T P(x))

×det2(1 + e−(μ+m)/T P†(x)). (7)

Inspection of the latter equation easily confirms that

DetM(μ = 0) ∈ R. (8)

For non-vanishing μ, we will indeed find that the determinant
is complex (albeit the imaginary part can be very small; see
below). However, we are going to show that the partition
function is nevertheless real, i.e., the imaginary part of Z
vanishes upon the integration over gauge configurations. This
can be most easily seen by adopting the Polyakov gauge
where

U4(t �= 1, x) = 1, P(x) = U4(t = 1, x).

The partition function takes the form

Z =
∫

DUμeβSYM f (U4(1, x),U †
4 (1, x)),

where f is a real and analytic function. Given that the Haar
measure and the action are real, we find upon the substitution
U4(1, x) → U †

4 (1, x) that

Z(μ) = Z∗(μ). (9)

For positive chemical potentials and for low temperatures,
i.e.,

μ ≥ 0,
m

T
� 1, (10)

we can neglect quark excitations from the Dirac sea. For-
mally, the second determinant in (7) equals unity to a very
good approximation, and we find

DetM(μ) ≈
∏
x

det2(1 + e(μ−m)/T P(x)). (11)
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For any unitary matrix P ∈ SU (3), we find that

det(1 + cP) = 1 + ctrP + c2trP† + c3. (12)

This implies that the quark determinant is also real for μ = m
(i.e., c = 1) (see also [27]):

DetM(μ = m) ∈ R. (13)

Let us now study the case of large chemical potentials, i.e.,
μ � m. Starting from (11), we obtain

DetM(μ) = e2NcV (μ−m)/T

×
∏
x

det2(1 + e−(μ−m)/T P†(x)), (14)

where Nc = 3 is the number of colours, V = ∑
x is the

spatial volume and where we have used the fact that P is a
unitary matrix, i.e., PP† = 1, det P = 1. It is convenient to
introduce the scaled chemical potential relative to the mass
threshold:

t = μ − m

T
. (15)

Using (11) in the functional integral (1), the partition function
only depends on t and obeys the relation

Z(t) ≈ e2NcV t Z(−t) (m � T ), (16)

where we have used the fact that Z is real (see (9)). As usual,
we define the quark density by

σ(t) = T

V

∂ ln Z(μ)

∂μ
= 1

V

∂ ln Z(t)

∂t
. (17)

Using (16), we find the duality

σ(t) ≈ 2Nc − σ(−t) (m � T ). (18)

For negative t , the chemical potential is below the mass
threshold and the density σ(t) rapidly approaches zero
with decreasing t . This implies with the help of (18) that,
for large t , the density rapidly approaches the saturation
density:

σ(t)
t→∞→ 2Nc. (19)

As a side-remark, we point out that in this regime, i.e., μ �
m, the quark determinant becomes a (real) constant (see (14)),

DetM(μ) ≈ e2NcV (μ−m)/T ,

and the partition function at large μ is given by that of pure
SU (3) Yang–Mills theory up to a multiplicative constant.

2.2 Reweighting simulations

If the imaginary part of the quark determinant is small, i.e.,
for μ ≈ 0 or μ ≈ m or μ � m, the standard reweighting

procedure can produce reliable results. Using a polar decom-
position of the determinant, the partition function (1) can be
rewritten as

Z(μ) =
∫

DUμeβSYM[U ]|DetM(μ)| exp{iφ[U ]}. (20)

We here introduce the partition function of the phase-
quenched theory by

ZPQ(μ) =
∫

DUμeβSYM[U ]|DetM(μ)|. (21)

Sometimes, the phase-quenched theory is referred to as QCD
with an iso-spin chemical potential. Indeed, rewriting e.g.

|DetM(μ)|2 = DetM(μ)Det∗M(μ)

= DetM(μ)DetM(−μ),

the phase-quenched theories can be interpreted as (in this
case) a 2-flavour quark theory with a chemical potential cou-
pling to the flavours with opposite sign.

The Monte Carlo simulation based upon reweighting gen-
erates a Markov chain of configurations {Uμ} of the phase-
quenched theory (21). The expectation value of any observ-
able A is then obtained by

〈A〉 = 〈A exp{iφ[U ]}〉PQ

〈exp{iφ[U ]}〉PQ
. (22)

For a successful reweighting approach, it is essential that the
phase factor expectation value, i.e.,

〈exp{iφ[U ]}〉PQ = Z(μ)

ZPQ(μ)
, (23)

is of significant size. This would ensure a good signal-to-
noise ratio. However, it has been known for a long time (see
e.g. [28]) that the full and phase-quenched theories have a
difference in their free energy density, say � f . Using the
triangle inequality, one also finds that

ZPQ(μ) ≤ Z(μ).

Hence, the ratio of their partition function in (23) is expo-
nentially suppressed with the volume V :

〈exp{iφ[U ]}〉PQ = exp{−� f V }, � f ≥ 0.

Consequently, reweighting simulations are restricted to the
parameter space for which the quark determinant is almost
real, i.e.,

� f (μ) ≈ O(1/V ).

2.3 Density-of-states method

The density-of-states method belongs to the class of Wang–
Landau type simulations [17]. It has been argued in [21] that
the LLR version [18] possesses an exponential error suppres-
sion that allows one to estimate a strongly suppressed phase
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factor expectation value (23) with good relative precision.
This has been demonstrated for the first time for the Z3 spin
model at finite densities [22].

Central to all Wang–Landau methods is the density-of-
states, which is defined in the present case of HDQCD by

ρ(s) =
∫

DUμδ(s − φ[U ])eβSYM[U ]|DetM |. (24)

Using this definition, the phase factor expectation value (23)
can be obtained by Fourier transform

〈eiφ〉 =
∫

dsρ(s) exp{is}∫
dsρ(s)

. (25)

Since the final answer is potentially a very small number, the
density-of-states method needs to overcome two issues here:
(i) ρ(s) must be calculated to high precision over the whole
range of s. This is where standard histogram methods fail:
they do not produce enough statistics in certain regions of
s (overlap problem). (ii) The smallness of 〈exp{iφ}〉 arises
from cancellations implying that the numerical integration
must be carried out with extreme care. The LLR algorithm
generically overcomes the issue (i), and we refer to the lit-
erature for details (most notably see [29] for a thorough dis-
cussion of the theoretical framework). To resolve issue (ii),
we will adopt the approach that proved successful in the case
of the Z3 spin model [22], and we will present details in the
result section.

We finally point out that the quark density σ(μ) can be
calculated once good results for the phase factor expectation
value are available. This arises from the observation that (23)
leads to

σ(μ) = T

V

d

dμ
ln〈eiφ〉(μ) + σPQ(μ), (26)

where we have introduced the phase-quenched quark density
by

σPQ(μ) = T

V

d ln ZPQ(μ)

dμ
. (27)

3 Results from reweighting

Throughout this paper, we use discretised space-time employ-
ing a N 4 cubic lattice and the Wilson action (2). We work in
the Polyakov gauge, i.e., all links are updated except

U4(x, t �= 1) = 1.

This implies that the remaining time-like links are identified
with the Polyakov line:

U4(x, t = 1) = P(x).

Using the gauge invariance of the quark determinant, it is
apparent that DetM does only depend on trPn(x) [30–32].

We use the local hybrid-Monte Carlo (LHMC) simulation
algorithm (with respect to the angles of the algebra) for the
update of configurations according to the phase-quenched
partition function (21). We have validated and fine-tuned
the algorithm by comparing some of the results with those
obtained by the standard Cabibbo–Marinari method. The
LHMC update shows shorter auto-correlation times (e.g. for
the topological charge). The simulation parameters are

N = 8, β = 5.8, κ = 0.12, Nconf = 12,000 (28)

where Nconf is the number of the independent configura-
tions for the Monte Carlo estimators. Errors are obtained
by a bootstrap analysis. Our findings from the reweighting
approach are shown in Fig. 1. The chemical potentials are
chosen symmetrically around the mass threshold, which is
(using κ = 0.12, into (6))

am ≈ 1.427.

Our numerical findings are in line with the theoretical pre-
dictions in Sect. 2.1: the phase factor expectation value
approaches 1 for small and large values of μ and for μ close to
the mass threshold. Because of the particle–hole duality (18),
we can confine ourselves to discussing only the case μ ≤ m.
It is remarkable that on a quantitative level the reweighting
approach produces reliable results for μ as large as 1. Note,
however, that, for the intermediate values, i.e.,

1.15 <∼ μ <∼ 1.4,

we do encounter a sign problem with the signal being much
smaller than the noise.

Let us discuss the implications for the quark density σ(μ).
We start with a discussion of the phase-quenched density.
Since the only μ dependence is in the quark operator, we
find

σPQ(μ) = 1

ZPQ(μ)

∫
DUμeβSYM[U ]|DetM(μ)|

× ∂

∂μ
ln |DetM(μ)|, (29)

where for HDQCD DetM is given in (4). As detailed in
Sect. 2.1, HDQCD is real for vanishing chemical potential,
for μ = m and for large μ implying that σ = σPQ for these
limiting cases. This signals that the phase-quenched density
shows the correct behaviour for small μ, the correct onset at
μ = m and the correct asymptotic value given by saturation.
It is therefore expected that σPQ(μ) qualitatively reflects the
μ dependence of the full density σ . This is indeed verified by
our direct evaluation of (29) shown in Fig. 2. Although phase
quenching produces qualitatively correct results, we cannot
conclude that the sign problem is weak (see below).

Regardless of the quantitative details, we can draw some
interesting conclusions for the density using the identity (26).
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Fig. 1 Left The phase factor expectation value 〈eiφ〉 as a function of the chemical potential μ (simulation parameters in (29)); black symbols the
reweighting approach; red symbols the LLR approach as a preview. Right detail of the graph
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Fig. 2 Quark density σPQ(μ) of the phase-quenched theory as a func-
tion of the chemical potential μ

For small chemical potentials, e.g., μ ≤ 1.1, the phase factor
expectation value is decreasing. Consequently, the correction

T

V

d

dμ
〈eiφ〉

is negative implying that the phase-quenched result overesti-
mates the true result σ . This is usually referred to as “Silver
Blaze problem”. With a smoothness assumption of 〈eiφ〉, we
expect that its derivative with respect to μ vanishes at μc1

with 1.15 < μc1 < 1.4. For this chemical potential, we find
agreement:

σPQ(μc1) = σ(μc1).

For μc1 < μ < m, the derivative of 〈eiφ〉 is positive. We
here find an inverted Silver Blaze behaviour: close to the
mass threshold, the phase-quenched theory underestimates
the value of the density. We stress, however, that a study
involving several volumes and temperatures would be needed
to decide whether this effect has a role to play for phe-
nomenology. This is left to future work.

4 LLR results

4.1 Foundations of the LLR simulation

Our aim is to calculate an approximation of the density-of-
states ρ(s) for the imaginary part s of the quark determi-
nant. We divide the domain of support for ρ into intervals
[sk, sk + ds]. Under physically motivated assumptions, ρ(s)
is a smooth function such that a Taylor expansion over these
intervals yields a valid approximation. Central to the LLR
approach are the Taylor coefficients (also called LLR coeffi-
cients)

ak := d ln ρ

ds
|s=sk+ds/2, (30)

which will be the target of our numerical simulations below.
With these coefficients at our fingertips, we use a piece-wise
linear approximation for ln ρ and derive the approximation:

ρ(s) = ρ0

(
N−1∏
k=1

eakds

)
exp {aN (s − sN )} , (31)
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where, for a given s, the upper boundary N is chosen such
that

sN ≤ s ≤ sN + ds, sk = s0 + kds.

The goal of the LLR method is to calculate the coefficients
from a stochastic non-linear equation. A key ingredient of
this equation is the restricted and reweighted expectation val-
ues [18] with a being an external variable (not to be confused
with the lattice spacing):

〈〈W [φ]〉〉k (a) = 1

Nk

∫
DUμ|DetM |eβSYM

×θ[sk ,ds](φ[U ])W [φ]e−aφ[U ], (32)

Nk =
∫

DUμ|DetM |eβSYM θ[sk ,δs ](φ[U ])
×e−aφ[U ], (33)

where we have introduced the modified Heaviside function,

θ[sk ,δs ](φ) =
{

1 for sk ≤ φ ≤ sk + δs
0 otherwise .

For the particular choice

W [φ] = φ − sk − δs

2
=: �φ

we showed that

〈〈�φ〉〉k (a) = 0 for a = ak . (34)

The latter equation is a non-linear equation to obtain a. For
instance, this can be done by using the fixed point iteration:

a(n+1)
k = a(n)

k + 12

δ2
s

〈〈�φ〉〉k
(
a(n)
k

)
.

Note that the expectation value 〈〈�φ〉〉k is not known
exactly. An estimate, however, can be obtained by standard
Monte Carlo simulations. The issue here is that the statistical
error interferes with convergence of the fixed point iteration.
The mathematical framework to obtain a solution was devel-
oped by Robbins and Monro. They showed that the under
relaxed iteration

a(n+1)
k = a(n)

k + αn
12

δ2
s

〈〈�φ〉〉k
(
a(n)
k

)
(35)

∑
n

αn → ∞,
∑
n

α2
n = finite, (36)

converges to the correct answer. Moreover, if the iteration
is truncated at N = Ncut and independently repeated many
times, the final values a(Ncut)

k are normal distributed with the
true value ak as mean. This paves the way to a bootstrap
analysis to obtain an error estimate for our estimate for ak .
A common choice is (0 < γ ≤ 1)

αn =
{

1 for 0 ≤ n ≤ nt ,
1/(n − nt )γ for n > nt ,

(37)

where the iterations with n ≤ nt are considered as thermal-
isation steps, and for which the limiting case γ = 1 is the
optimal choice for error suppression.

Once the Taylor coefficients are obtained for the range
s of interest, the generalised density-of-states ρ(s) can be
calculated in the usual way:

ln ρ(s) = −
n−1∑
k=1

aiδs − anδs/2 (38)

n such that: sn ≤ s < sn+1. (39)

Our final target is phase factor expectation value, which can
be obtained by means of two LLR integrals (details of the
numerical method will be presented in Sect. 4.4 below):

〈eiφ〉 =

∫ smax

0
ρ(s) cos(s)ds

∫ smax

0
ρ(s)ds

(40)

Since ρ(s) is rapidly decreasing, we will find that it is not
difficult to find a reliable cutoff smax.

4.2 Thermalisation

We find that the thermalisation is most demanding for small
interval sizes δs and for chemical potentials near the onset
value. In order to provide insight into the thermalisation his-
tory, we present here some results for the simulation param-
eters listed in Table 1.

The thermalisation history for 40 independent random
starts is shown in Fig. 3. Between each iterations, we per-
formed 40 sweeps at a fixed parameter a(n)

k in order to let the
system equilibrate.

We see a decrease of the width of the error band with
increasing iteration number n, which is due to the Robbins
Monro underrelaxation. In the production runs for the results
below, we have chosen nt = 200 and a maximum of 1, 000
iterations. We then make use of the Robbins Monro feature
that the final values for ak are normal distributed with the
correct mean. For the statistical analysis, we repeated each
iteration 40 times and use the copies for ak for the bootstrap
analysis.

For a consistency check and to analyse the effect of the
Robbins Monro parameter γ , we calculated the average ak
for different values of γ . We find

Table 1 Simulation parameters for one particular value s

δs sk nt γ L4 β κ μ

0.2986 11.797 30 1 84 5.8 0.12 1.4321
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Fig. 3 Thermalisation history (simulations parameters are in Table 1)

γ 0.6 0.7 0.8 0.9 1.0
−ak 3.287 3.334 3.256 3.288 3.300
err[10−2] 5.397 3.495 2.356 1.656 1.082

We did not observe any ergodicity issues and found that the
limiting case γ = 1 is most effective for error reduction as
expected.

4.3 Probability distribution of the imaginary part

According to Fig. 1, we will distinguish three parameter
regimes, depending on the choice of the chemical potential
μ:

• Low density regime for μ <∼ 1.1: this regime might be
accessible by a Taylor expansion with respect to μ and
simulations using reweighting.

• Regime with a strong sign problem for 1.1 <∼ μ <∼ 1.4:
this regime is beyond the scope of standard Monte Carlo
methods and will be specifically targeted with the LLR
method below.

• Dense regime for 1.4 <∼ μ ≤ m ≈ 1.427: the system
possesses a significant quark density, which reaches half
of the saturation density for μ = m.

Because of the duality (16), we do not need to explicitly
explore the regime μ > m. We stress that the above regime
boundaries have been chosen in an ad hoc way. We are not
aware of any physical phenomenon that would define these
boundaries in a rigorous way. The different regimes above,
however, have quite distinct features as we will reveal in this
section by exploring the density-of-states.

To this aim, we have calculated the LLR coefficients ak
(30) over a range of imaginary parts s for given chemical
potentials. The simulation parameters again have been

84 β = 5.8 κ = 0.12.

Note that the LLR method becomes exact in the limit of
vanishing interval size δs .

In practice, we check that our result for ak does not depen-
dent on δs . We illustrate this fact for μ = 1.3321, which
belongs to the interesting regime of a strong sign problem.
Our findings are shown in Fig. 4. We find that the coeffi-
cients are quite insensitive to size of δs . This also holds for
the other regimes. Note that a smaller δs requires more inter-
vals to cover the same (integration) domain for s. We found
that δs = 0.896 is a good compromise between accuracy and
computational effort, and it is this value which we have used
in most simulations.

Figures 5, 6, 7 and 8, left panel, show the LLR coeffi-
cient as a function of s for various values of the chemical
potential. We stress that in these figures, the error bars are
present but smaller than the symbols. Error bars are obtained
from 40 independent sets of a that are subjected to 500 boot-
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Fig. 4 Strong sign-problem regime: the LLR coefficient a(s) as a function of s for μ = 1.3321 (left panel). Right detail of the graph
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1.1421. The error bars are smaller than the symbols
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Fig. 6 Strong sign-problem regime (i): a(s) for several values of the
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differs from the previous plot. We observe that a(s) is an increasing
function of μ for any value of s > 0
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Fig. 7 Strong sign-problem regime (ii): a(s) for several values of the
chemical potential μ between 1.3121 and 1.3721. In this range, we
observe that a(s) is a decreasing function of μ

strap samples. Figure 5 shows the low density regime. We
find a slight modulation of a(s) with s, which did not occur
for μ = 1.3321 (see Fig. 4). In Figs. 6 and 7, we sum-
marise our findings for a(s) for a range of chemical poten-
tials that mostly belong to the strong sign-problem regime.
We observe a quite distinct behaviour: the curvature of the
curves increases with increasing chemical potential. For the
largest values of μ shown in Fig. 7, we enter the dense phase.
Our largest values of μ are shown in Fig. 8, left panel. Here,
we observe that a(s) starts to show an oscillatory behaviour.
Needless to say that we have checked that these oscillations
are independent of the choice of δs and statistically signifi-
cant. This is illustrated in Fig. 8, left panel, where we show
the coefficient a(s) for the chemical potential μ = 1.4321,
which is slightly above the mass threshold of m = 1.42711.

4.4 The LLR integration

Once the coefficient a(s) has been extracted, we are in a
position to calculate the phase factor expectation value 〈eiφ〉
for a given value of μ by means of (40). The straightfor-
ward method would be to make use of the piece-wise linear
interpolation (39) and to control the systematic errors in the
Riemann sense by making δs smaller. It was already noted
in [22] for the case of the Z3 theory at finite densities that
this method does not muster enough precision at an afford-
able size δs to obtain a good signal-to-noise ratio. Instead of
seeking convergence in the Riemann sense, we expand ln ρ

in terms of basis functions fn(s):

ln ρ(s) =
Nmax∑
n

cn fn(s). (41)

The approximation now occurs by the truncation of the above
sum at Nmax. Here, we follow the strategy of compressed
sensing (see e.g. [33]) and choose the basis in such a way
that a minimal number of coefficients cn represents the data
at given accuracy and χ2 per degree-of-freedom (dof) of the
fit. It is quite remarkable that a basis with simple powers of
s, i.e.,

fn(s) = sn . (42)

already produces very good results, at least for the Z3 the-
ory [22]. Equation (42) is also our choice here for HDQCD.
Note that coefficients cn , with n are incompatible with the
theory’s reflection symmetry ln ρ(−s) = ln ρ(s) and are
therefore set to zero.

In summary, our approach is:

• Using the numerical estimates ak , we build the function
P(s) = ln(ρ(s)) according to
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Fig. 8 Left Dense regime (i): a(s) for several values of the chemical potential μ close to the mass threshold m. Right Dense regime (ii): a(s) as a
function of s near “half-filling” (slightly above m) for three different values of δs

Table 2 Fit results for μ = 1.3321 and δs = 0.29867. We show
the fit coefficients for different truncations Ai , the corresponding χ2

per degree-of-freedom and the result of the integration. Missing results

imply that the corresponding coefficient is fixed to zero. In the last rows,
the results are obtained by numerical integration either with or without
folding

δs = 0.29867 c0 × 103 c2 × 102 c4 × 106 c6 × 1010 c8 × 1014 χ2/dof 〈eiφ〉 × 105(i) 〈eiφ〉 × 105(i i)

Ã4 −2.0929 (27) 1.770 (22) 7.4 0.962 (16) 0.951 (16)

A4 −1.8 (1.1) −2.0921 (25) 1.764 (20) 7.3 0.957 (15) 0.946 (15)

A6 0.3 (1.0) −2.1148 (44) 2.423 (84) −4.14 (43) 0.14 1.222 (44) 1.209 (43)

Ã6 −2.1145 (47) 2.418 (91) −4.12 (46) 0.15 1.220 (47) 1.206 (46)

Ã8 −2.1161 (68) 2.507 (270) −5.46 (2.71) 6.03 (11) 0.13 1.255 (99) 1.241 (98)

P(s) = −
n−1∑
k=1

aiδs − anδs/2, (43)

s = sn + δs/2 = nδs + δs/2, (44)

where in the last equation, we choose s0 = 0 as a starting
point.

• We fit the result to an even-power polynomial

P(s) =
deg/2∑
i=0

c2i s
2i . (45)

• From the fit result, we reconstruct the density

ρ(s) = exp(P(s)). (46)

• Finally, we semi-analytically compute the LLR integral

〈eiφ〉 =

∫ smax

0
ρ(s) cos(s)ds

∫ smax

0
ρ(s)ds

. (47)

We have performed various checks in order to ensure that
our procedure is stable. First, we have tried different trunca-
tions: we denote by Ai a fit to a polynomial of degree i in
which all the coefficient c2i are free parameters. We also per-
formed some fits with c0 fixed to 0, we call them Ãi . Some
details of our fit procedure for the finest δs can be found in
Table 2 for the specific value of μ = 1.3321. By comparing
Ã2 with A2 and A6 with Ã6, we see that constant term c0

has very little effect on the other fit parameters. All in all, we
observe that the fit procedure is robust, however, our data are
clearly best fitted by a degree-6 polynomial. Adding higher
degrees gives compatible results with larger errors (see A8).
We also present the fit results for δs = 0.29867 in Fig. 9.

Since we are looking for a very small signal emerging
after large cancellations, even the trivial identity
∫ smax

0
→ 1

2

∫ smax

−smax

(folding) (48)

might perform differently upon its numerical implementa-
tion. In order to check the robustness of our results, we imple-
mented both integrals. In Table 2, the first integral (from 0 to
smax) is denoted by (i) and the second (from −smax to smax)
is marked by (ii). We see that the difference is smaller than
the statistical error.
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Fig. 10 Left Result for the phase factor expectation value as a function of the cut smax. Results are shown for μ = 1.3321 and δs = 0.29867. Right
〈eiφ〉 for μ = 1.3321 as a function of δ2

s . The results of the extrapolation is 1.185(18) × 10−5, statistical error only

We have also checked that the results do not depend on the
cutoff smax, which is expected since ρ(s) is rapidly decreas-
ing. This is illustrated in Fig. 10, left panel, where we have
changed the value of smax before performing the fit of ln(ρ),
in other words we have varied the value of n in the functional
form Eq. 43. We have also checked that the integral itself
does not depend on smax.

Finally we investigate the δs dependence. We have already
seen that the LLR coefficients exhibit very little dependence,
but it remains to be checked that the same holds for the LLR
integrals leading to the phase factor expectation value. In
fact, we expect the artefacts to be dominated by order δs2

terms [29]. Using μ = 1.3321 (from the severe sign-problem
region), we carried out simulations with several different val-
ues of δs, reconstructed the LLR coefficients and finally per-
formed the LLR integrals to obtain values of 〈eiφ〉 for this set
of δs . We then performed a linear extrapolation in δs2. Our
findings are summarised in Fig. 10, right panel: we indeed

find a very small δs2 dependence. In fact, the final results
for 〈eiφ〉 are more or less independent of δs within statisti-
cal error bars. Our numerical findings for 〈eiφ〉 for different
truncations can be found in Table 3.

4.5 The phase factor expectation value

We have repeated the analysis outlined in the previous sub-
section for several values of the chemical potential in the low
density region, in the strong sign-problem and in the dense
regimes (see Sect. 4.3 for a more formal definition of these
regimes). The numerical results are given in the appendix.
Each regime has its own challenges:

In the low density regime, the LLR coefficients a(s)
are rapidly increasing with s. This implies a rather nar-
row density-of-states ρ(s), which might approximate a Dirac
function δ if μ approaches zero. Here, a careful fine-tuning
of δs and of the upper integration limit smax would be in
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Table 3 Result for the phase factor expectation value for μ = 1.3321 as a function of δs for various fit Ansätze. The integral has been computed
from −smax to smax (with folding)

A4 A6 Ã6 Ã8

δs 〈eiφ〉 × 105 χ2/dof 〈eiφ〉 × 105 χ2/dof 〈eiφ〉 × 105 χ2/dof 〈eiφ〉 × 105 χ2/dof

0.89600 0.944 (17) 6.1 1.196 (39) 0.6 1.223 (44) 0.99 1.368 (102) 0.77

0.71680 0.957 (15) 11 1.254 (39) 0.8 1.299 (43) 2.5 1.563 (94) 1.46

0.59733 0.929 (14) 6.1 1.189 (41) 0.10 1.206 (49) 0.26 1.304 (112) 0.15

0.44800 0.928 (12) 4.8 1.146 (39) 0.16 1.151 (46) 0.18 1.159 (112) 0.18

0.35840 0.923 (16) 3.7 1.144 (49) 0.11 1.156 (54) 0.22 1.254 (119) 0.14

0.29867 0.946 (15) 7.3 1.209 (43) 0.14 1.206 (46) 0.15 1.241 (98) 0.13

order. Since this regime is easily accessible by the reweight-
ing approach, we did not further pursue an optimal choice
of parameters, but used a generic choice of parameters for a
validation of the method only.

In the strong sign-problem regime, our method works best:
the results are very robust against the parameter choice. The
LLR coefficients show a monotonic behaviour as a function
of s, and the choice of even powers of s for the base func-
tions fn(s) in (42) is converging rapidly: a few non-vanishing
coefficients represents hundreds of data points with a χ2/dof
well below one.

The dense regime is obtained if the chemical potential
takes values close to the heavy quark mass, i.e., its onset
value. The sign problem in this regime is mild, and good
results are obtained by the reweighting approach. The coef-
ficients a(s) show oscillations around a significant (nega-
tive) mean value. Upon reconstructing the density-of-states
(see (31)), we find still find a monotonic decreasing ρ(s)
(by virtue of the mean value of a), but clearly a significant
number of base functions fn(s) is needed to grasp the oscil-
latory behaviour, and the method loses its appeal. Insights
into the cause of the oscillations would help to develop a
new set of base functions fn(s) that, again with few coeffi-
cients, would grasp the essence of the numerical data. For
the present paper, we do present LLR results for this regime
as well, but observe that the representation of the data with
the base functions fn(s) = s2n failed. Further work in this
direction is needed, which we will be presented elsewhere.

Finally, we point out our rationale for the approximation
of the numerical data for ln ρ(s) in terms of fn(s): if few
base functions can approximate the data well (χ2/dof <

1), the bootstrap analysis for the final value of the phase
factor expectation values yields small statistical errors, and
if the final result is insensitive to the interval size δs , we are
confident that the LLR approach solves the sign problem in
this regime. We have presented evidence for HDQCD in the
cases for which the reweighting method can still produce
statistical significant results. We also note that if the base
function fit fails in the sense that it produces a χ2/dof ≥ 100,

μ
1 1.1 1.2 1.3 1.4 1.5

ln
ex
p(

iφ
)

-14

-12

-10

-8

-6

-4

-2

0

Fig. 11 Natural logarithm of 〈eiφ〉 for different values of μ, only the
statistical errors are shown. The colour code is as follows: the plain blue
points (between μ = 1.0621 and μ = 1.3721) have a χ2 per degree-
of-freedom of order one, the light blue points between 10 and 50, and
the white points larger than 50

it does not necessarily fail to produce a result for the phase
factor expectation value close to the true value: it might that
fit fails at a large scale in a region of the integration parameter
s that is irrelevant to the final result of the integration. We
indeed have observed this for dense regime: although the fit
fails according to the obtained χ2/dof, the final results is
close to the value known from the reweighting method.

We finally present our main numerical finding. We are
interested in ln〈exp{iφ}〉 since it is this quantity that enters
in e.g. the calculation of the quark density (see (17)):

σ(μ) = T

V

∂

∂μ
ln〈eiφ〉 + T

V

∂

∂μ
ln ZPQ(μ) (49)

Our result for ln〈exp{iφ}〉 as a function of the chemical poten-
tial μ is shown in Fig. 11. Further details, such as the quality
of the fits, are given in Tables 4, 5, 6 and 7 in the appendix.
We have also added these LLR results to the Fig. 1 of Sect. 3
to validate the LLR method against the reweighting data and
to demonstrate the quality of the LLR data in the strong sign-
problem regime.
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Table 4 Fit result of the phase factor expectation value for the low values of μ and different truncations

μ → 1.04210 1.06210 1.08210 1.10210 1.12210

〈eiφ〉 × 10 χ2/dof 〈eiφ〉 × 10 χ2/dof 〈eiφ〉 × 10 χ2/dof 〈eiφ〉 × 102 χ2/dof 〈eiφ〉 × 104 χ2/dof

Ã6 2.216 (4) 2074 1.577 (4) 1156 1.126 (3) 1258 7.16 (3) 489 4.30 (1) 94

A6 2.160 (4) 1636 1.548 (4) 1032 1.104 (3) 1087 7.06 (3) 419 4.27 (1) 70

Ã8 2.513 (5) 786 1.834 (6) 293 1.299 (3) 189 8.14 (3) 53 4.46 (2) 64

A8 2.452 (5) 610 1.806 (5) 24 1.278 (3) 126 8.03 (3) 17 4.40 (2) 47

Ã10 2.727 (5) 252 1.990 (7) 66 1.372 (4) 45 8.32 (4) 43 4.29 (2) 43

A10 2.670 (6) 181 1.963 (6) 42 1.349 (4) 8.3 8.18 (3) 10 4.20 (2) 16

Ã12 2.856 (6) 75 2.072 (7) 20 1.391 (4) 38.2 8.24 (4) 42 4.17 (3) 35

A12 2.806 (6) 42 2.042 (7) 4.8 1.362 (4) 5.1 8.05 (4) 5.9 4.03 (2) 1.25

Ã14 2.927 (7) 41 2.107 (9) 40 1.390 (5) 47 8.15 (4) 58 4.17 (3) 37

A14 2.878 (6) 67 2.072 (8) 31 1.353 (5) 13 7.89 (4) 20 3.99 (2) 19

Table 5 Fit result of the phase factor expectation value for the middle-low values of μ and different truncations

μ → 1.14210 1.16210 1.18210 1.20210 1.23210

〈eiφ〉 × 102 χ2/dof 〈eiφ〉 × 103 χ2/dof 〈eiφ〉 × 103 χ2/dof 〈eiφ〉 × 104 χ2/dof 〈eiφ〉 × 105 χ2/dof

Ã6 2.018 (5) 117 6.817 (47) 41 1.888 (5) 12 4.89 (4) 17 5.02 (4) 13

A6 2.008 (4) 115 6.710 (24) 32 1.883 (5) 11 4.78 (3) 0.3 4.87 (3) 0.3

Ã8 1.861 (9) 37 6.415 (43) 21 1.959 (1) 0.7 5.02 (6) 16 5.28 (10) 12

A8 1.832 (8) 22 6.250 (36) 4.6 1.953 (9) 0.2 4.81 (4) 0.3 4.94 (8) 0.2

Ã10 1.777 (12) 25 6.752 (61) 14 1.960 (2) 0.7 5.26 (9) 16 5.86 (21) 12

A10 1.725 (11) 2.4 6.515 (50) 0.5 1.951 (1) 0.2 4.86 (8) 0.2 5.11 (17) 0.1

Ã12 1.817 (16) 234 6.930 (80) 13 1.945 (2) 0.6 5.67 (16) 15 6.99 (46) 11

A12 1.747 (14) 1.9 6.605 (53) 0.2 1.929 (2) 0.1 4.98 (13) 0.2 5.43 (36) 0.1

Ã14 1.885 (21) 20 6.972 (11) 14 1.958 (3) 0.6 6.23 (25) 50 8.79 (89) 19

A14 1.796 (22) 0.3 6.505 (82) 0.1 1.933 (3) 0.1 5.10 (22) 40.42 5.74 (73) 0.5

Table 6 Fit result of the phase factor expectation value for the middle-high values of μ and different truncations

μ → 1.25210 1.27210 1.29210 1.31210 1.33210

〈eiφ〉 × 105 χ2/dof 〈eiφ〉 × 106 χ2/dof 〈eiφ〉 × 106 χ2/dof 〈eiφ〉 × 106 χ2/dof 〈eiφ〉 × 105 χ2/dof

Ã6 1.20 (2) 12 3.97 (6) 14 2.56 (3) 9.8 3.33 (4) 9.3 1.25 (10) 10.5

A6 1.16 (1) 0.2 3.76 (5) 0.3 2.47 (3) 0.2 3.23 (3) 0.2 1.21 (9) 0.9

Ã8 1.26 (3) 12 4.26 (13) 14 2.77 (9) 9.5 3.60 (12) 8.7 1.37 (3) 8.1

A8 1.15 (3) 0.1 3.74 (10) 0.4 2.51 (7) 0.2 3.30 (10) 0.1 1.28 (2) 0.1

Ã10 1.35 (7) 12 5.15 (3) 14 3.09 (27) 9.7 4.04 (28) 8.7 1.49 (6) 7.9

A10 1.09 (6) 0.1 3.75 (2) 0.4 2.37 (21) 0.1 3.23 (21) 0.1 1.27 (5) 0.2

Ã12 1.60 (2) 12 7.56 (9) 13 3.97 (63) 9.8 5.03 (64) 8.7 1.71 (11) 7.9

A12 1.02 (14) 0.1 3.98 (7) 0.4 2.07 (5) 0.1 3.01 (47) 0.1 1.23 (9) 0.1

Ã14 2.11 (33) 1392 1.34 (21) 34 5.93 (15) 394 7.68 (141) 184 2.35 (23) 7.8

A14 0.829 (28) 2853 0.50 (174) 21 9.86 (11) 462 2.91 (96) 246 1.34 (17) 0.4
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Table 7 Fit result of the phase factor expectation value for the high values of μ and different truncations. We do not give the χ2-values larger than
5000

μ → 1.35210 1.37210 1.39210 1.41210 1.43210

〈eiφ〉 × 104 χ2/dof 〈eiφ〉 × 103 χ2/dof 〈eiφ〉 × 102 χ2/dof 〈eiφ〉 × 10 χ2/dof 〈eiφ〉 × 10 χ2/dof

Ã6 1.354 (7) 44 2.66 (2) 47 3.42 (2) 858 2.177 (6) 4418 4.667 (7) � 103

A6 1.316 (6) 17 2.65 (2) 43 3.26 (2) 735 2.135 (6) 3906 4.600 (7) � 103

Ã8 1.523 (12) 17 3.24 (4) 8.1 4.80 (3) 243 2.869 (9) 2478 5.564 (6) � 103

A8 1.456 (9) 0.3 3.22 (4) 4.8 4.62 (3) 208 2.812 (9) 2107 5.484 (7) � 103

Ã10 1.613 (25) 16 3.60 (7) 3.6 5.82 (5) 74 3.479 (1) 1574 6.207 (6) � 103

A10 1.489 (19) 0.1 3.56 (7) 0.7 5.65 (4) 63 3.404 (1) 1296 6.117 (7) � 103

Ã12 1.717 (47) 15 3.80 (12) 3.1 6.51 (6) 26 3.994 (1) 1065 6.659 (6) � 103

A12 1.486 (36) 0.1 3.73 (12) 0.3 6.35 (5) 21 3.902 (1) 855 6.560 (6) � 103

Ã14 1.926 (77) 63 3.96 (16) 4.5 6.97 (7) 21 4.422 (1) 944 7.021 (5) � 103

A14 1.511 (58) 58 3.85 (16) 1.8 6.83 (5) 21 4.317 (1) 799 6.915 (6) 4858

A16 – – 3.95 (22) � 103 7.17 (6) � 103 4.658 (15) � 103 7.224 (6) 4787

5 Conclusions

We have thoroughly studied QCD with a chemical poten-
tial for heavy quarks using the density-of-states approach
(LLR version [18,22]). This approach allows for a determi-
nation of the probability distribution of the imaginary part of
the quark determinant featuring exponential error suppres-
sion. The partition function appears as Fourier transform of
this probability distribution. We have bench-marked the LLR
results against results from the standard reweighting proce-
dure (in the regime where the latter produces a viable signal-
to-noise ratio) and find excellent agreement. We stress, how-
ever, that our approach yields an error that is typically smaller
by five orders of magnitude.

Due to an (approximate) particle–hole duality at low tem-
peratures, the phase factor expectation value
〈exp{iφ}〉(μ) is symmetric around the onset chemical poten-
tial μ = m for which 〈exp{iφ}〉 = 1. This suggests an
inverted Silver Blaze behaviour: close to the mass thresh-
old, the phase-quenched quark density underestimates the
result of the full theory.

Depending on the chemical potential, we found three dif-
ferent regimes which exhibit a different qualitative behaviour
of the density-of-states ρ(s):

(i) In the low density regime, where the theory is almost
real, the domain of support of ρ(s) is limited to small
values of s as expected.

(ii) For intermediate values of μ, we find a strong sign prob-
lem with 〈exp{iφ}〉(μ) reaching values as low as 10−6

for a small lattice size of 84 (see (28) for the simulation
parameters).

(iii) For chemical potentials close to the onset value, the the-
ory is almost real again. By contrast to the low density
regime, however, the density-of-states for the imaginary

part, i.e., ρ(s), has a large domain of support, and the
corresponding LLR coefficients a(s) show an oscilla-
tory behaviour. It is exceedingly difficult to control the
errors of the Fourier transform that is needed to access
the phase factor expectation value. Further studies to
explore the nature of the oscillations of a(s) is left to
future work. We point out, however, the regime close to
onset is accessible by reweighting.

In summary, we find that the LLR approach to the probability
distribution of the imaginary part of the quark determinant is
a viable tool for the whole range of chemical potentials (with
a possible exemption near the onset transition). At least for
the moderate lattice size explored in this paper, the approach
does solve a strong sign problem.
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Appendix A: Numerical details

The tables below present details of the fit of the base func-
tion expansion depending on the truncation (see Sect. 4.4
for details). In boldface is the fit used for the final results
presented in Fig. 11.
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