152 research outputs found

    MODISTools - downloading and processing MODIS remotely sensed data in R

    Get PDF
    Remotely sensed data – available at medium to high resolution across global spatial and temporal scales – are a valuable resource for ecologists. In particular, products from NASA's MODerate-resolution Imaging Spectroradiometer (MODIS), providing twice-daily global coverage, have been widely used for ecological applications. We present MODISTools, an R package designed to improve the accessing, downloading, and processing of remotely sensed MODIS data. MODISTools automates the process of data downloading and processing from any number of locations, time periods, and MODIS products. This automation reduces the risk of human error, and the researcher effort required compared to manual per-location downloads. The package will be particularly useful for ecological studies that include multiple sites, such as meta-analyses, observation networks, and globally distributed experiments. We give examples of the simple, reproducible workflow that MODISTools provides and of the checks that are carried out in the process. The end product is in a format that is amenable to statistical modeling. We analyzed the relationship between species richness across multiple higher taxa observed at 526 sites in temperate forests and vegetation indices, measures of aboveground net primary productivity. We downloaded MODIS derived vegetation index time series for each location where the species richness had been sampled, and summarized the data into three measures: maximum time-series value, temporal mean, and temporal variability. On average, species richness covaried positively with our vegetation index measures. Different higher taxa show different positive relationships with vegetation indices. Models had high R2 values, suggesting higher taxon identity and a gradient of vegetation index together explain most of the variation in species richness in our data. MODISTools can be used on Windows, Mac, and Linux platforms, and is available from CRAN and GitHub (https://github.com/seantuck12/MODISTools)

    Touching Random Surfaces and Liouville Gravity

    Full text link
    Large NN matrix models modified by terms of the form g(\Tr\Phi^n)^2 generate random surfaces which touch at isolated points. Matrix model results indicate that, as gg is increased to a special value gtg_t, the string susceptibility exponent suddenly jumps from its conventional value γ\gamma to γγ1{\gamma\over\gamma-1}. We study this effect in \L\ gravity and attribute it to a change of the interaction term from Oeα+ϕO e^{\alpha_+ \phi} for g<gtg<g_t to OeαϕO e^{\alpha_- \phi} for g=gtg=g_t (α+\alpha_+ and α\alpha_- are the two roots of the conformal invariance condition for the \L\ dressing of a matter operator OO). Thus, the new critical behavior is explained by the unconventional branch of \L\ dressing in the action.Comment: 15 pages, PUPT-1486 (last paragraph of sec. 2 revised

    Ubiquitin E3 ligase Atrogin-1 protein is regulated via the rapamycin-sensitive mTOR-S6K1 signaling pathway in C2C12 muscle cells

    Get PDF
    Atrogin-1 and Muscle-specific RING finger protein 1 (MuRF1) are highly expressed in multiple conditions of skeletal muscle atrophy. The phosphoinositide 3-kinase (PI3K)/Akt/forkhead box (FoxO) signaling pathway is well known to regulate Atrogin-1 and MuRF1 gene expressions. However, Akt activation also activates the mechanistic target of rapamycin complex 1 (mTORC1), which induces skeletal muscle hypertrophy. Whether mTORC1-dependent signaling has a role in regulating Atrogin-1 and/or MuRF1 gene and protein expression is currently unclear. In this study, we showed that activation of insulin-mediated Akt signaling suppresses both Atrogin-1 and MuRF1 protein contents and that inhibition of Akt increases both Atrogin-1 and MuRF1 protein contents in C2C12 myotubes. Interestingly, inhibition of mTORC1 with a specific mTORC1 inhibitor, rapamycin, increased Atrogin-1, but not MuRF1, protein content. Furthermore, activation of AMP-activated protein kinase (AMPK), a negative regulator of the mTORC1 signaling pathway, also showed distinct time-dependent changes between Atrogin-1 and MuRF1 protein contents, suggesting differential regulatory mechanisms between Atrogin-1 and MuRF1 protein content. To further explore the downstream of mTORC1 signaling, we employed a specific S6K1 inhibitor, PF-4708671. We found that Atrogin-1 protein content was dose-dependently increased with PF-4708671 treatment, whereas MuRF1 protein content was decreased at 50 μM of PF-4708671 treatment. However, MuRF1 protein content was unexpectedly increased by PF-4708671 treatment for a longer period. Overall, our results indicate that Atrogin-1 and MuRF1 protein contents are regulated by different mechanisms, the downstream of Akt, and that Atrogin-1 protein content can be regulated by the rapamycin-sensitive mTOR-S6K1-dependent signaling pathway

    Contrast-enhancement cardiac magnetic resonance imaging beyond the scope of viability

    Get PDF
    The clinical applications of cardiovascular magnetic resonance imaging with contrast enhancement are expanding. Besides the direct visualisation of viable and non-viable myocardium, this technique is increasingly used in a variety of cardiac disorders to determine the exact aetiology, guide proper treatment, and predict outcome and prognosis. In this review, we discuss the value of cardiovascular magnetic resonance imaging with contrast enhancement in a range of cardiac disorders, in which this technique may provide insights beyond the scope of myocardial viability

    Height and body-mass index trajectories of school-aged children and adolescents from 1985 to 2019 in 200 countries and territories: a pooled analysis of 2181 population-based studies with 65 million participants

    Get PDF
    Summary Background Comparable global data on health and nutrition of school-aged children and adolescents are scarce. We aimed to estimate age trajectories and time trends in mean height and mean body-mass index (BMI), which measures weight gain beyond what is expected from height gain, for school-aged children and adolescents. Methods For this pooled analysis, we used a database of cardiometabolic risk factors collated by the Non-Communicable Disease Risk Factor Collaboration. We applied a Bayesian hierarchical model to estimate trends from 1985 to 2019 in mean height and mean BMI in 1-year age groups for ages 5–19 years. The model allowed for non-linear changes over time in mean height and mean BMI and for non-linear changes with age of children and adolescents, including periods of rapid growth during adolescence. Findings We pooled data from 2181 population-based studies, with measurements of height and weight in 65 million participants in 200 countries and territories. In 2019, we estimated a difference of 20 cm or higher in mean height of 19-year-old adolescents between countries with the tallest populations (the Netherlands, Montenegro, Estonia, and Bosnia and Herzegovina for boys; and the Netherlands, Montenegro, Denmark, and Iceland for girls) and those with the shortest populations (Timor-Leste, Laos, Solomon Islands, and Papua New Guinea for boys; and Guatemala, Bangladesh, Nepal, and Timor-Leste for girls). In the same year, the difference between the highest mean BMI (in Pacific island countries, Kuwait, Bahrain, The Bahamas, Chile, the USA, and New Zealand for both boys and girls and in South Africa for girls) and lowest mean BMI (in India, Bangladesh, Timor-Leste, Ethiopia, and Chad for boys and girls; and in Japan and Romania for girls) was approximately 9–10 kg/m2. In some countries, children aged 5 years started with healthier height or BMI than the global median and, in some cases, as healthy as the best performing countries, but they became progressively less healthy compared with their comparators as they grew older by not growing as tall (eg, boys in Austria and Barbados, and girls in Belgium and Puerto Rico) or gaining too much weight for their height (eg, girls and boys in Kuwait, Bahrain, Fiji, Jamaica, and Mexico; and girls in South Africa and New Zealand). In other countries, growing children overtook the height of their comparators (eg, Latvia, Czech Republic, Morocco, and Iran) or curbed their weight gain (eg, Italy, France, and Croatia) in late childhood and adolescence. When changes in both height and BMI were considered, girls in South Korea, Vietnam, Saudi Arabia, Turkey, and some central Asian countries (eg, Armenia and Azerbaijan), and boys in central and western Europe (eg, Portugal, Denmark, Poland, and Montenegro) had the healthiest changes in anthropometric status over the past 3·5 decades because, compared with children and adolescents in other countries, they had a much larger gain in height than they did in BMI. The unhealthiest changes—gaining too little height, too much weight for their height compared with children in other countries, or both—occurred in many countries in sub-Saharan Africa, New Zealand, and the USA for boys and girls; in Malaysia and some Pacific island nations for boys; and in Mexico for girls. Interpretation The height and BMI trajectories over age and time of school-aged children and adolescents are highly variable across countries, which indicates heterogeneous nutritional quality and lifelong health advantages and risks

    Rising rural body-mass index is the main driver of the global obesity epidemic in adults

    Get PDF
    Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities(.)(1,2) This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity(3-6). Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55% of the global rise in mean BMI from 1985 to 2017-and more than 80% in some low- and middle-income regions-was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities in low- and middle-income regions. These trends have in turn resulted in a closing-and in some countries reversal-of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories.Peer reviewe

    Defining left ventricular remodeling following acute ST-segment elevation myocardial infarction using cardiovascular magnetic resonance.

    Get PDF
    The assessment of post-myocardial infarction (MI) left ventricular (LV) remodeling by cardiovascular magnetic resonance (CMR) currently uses criteria defined by echocardiography. Our aim was to provide CMR criteria for assessing LV remodeling following acute MI.This article is freely available via Open Access. Click on the Additional Link above to access the full-text via the publisher's site
    corecore