100 research outputs found

    Safety and tolerability of etirinotecan pegol in advanced breast cancer: analysis of the randomized, phase 3 BEACON trial

    Get PDF
    Purpose: New treatments with novel mechanisms of action and non-overlapping toxicities are needed for patients with metastatic breast cancer. Etirinotecan pegol (EP) is a long-acting topoisomerase-I inhibitor with a unique toxicity profile. The randomized phase 3 BEACON study that compared EP to treatment of physician’s choice (TPC) demonstrated its clinical activity. We now present detailed safety data from the BEACON trial. Methods: Patients with locally recurrent or metastatic breast cancer who had received at least two prior cytotoxic regimens for advanced disease were randomized to EP or TPC. Prior treatment with an anthracycline, a taxane and capecitabine was required. The frequencies of treatment-emergent AEs (TEAEs) and serious TEAEs were evaluated for the safety population, comprising all patients who received at least one dose of assigned treatment. Results: A total of 831 patients were evaluated (n = 425, EP; n = 406, TPC). Compared with TPC, EP was associated with a slightly higher median relative dose intensity (98.3 vs. 92.8 %, respectively) and significantly fewer grade ≥3 toxicities (48.0 vs. 63.1 %, P < 0.0001). The most commonly reported grade ≥3 toxicities in the EP arm were diarrhea (9.6 %) and neutropenia (9.6 %) and in the TPC arm, neutropenia (30.8 %). Median time to onset of grade ≥3 diarrhea was delayed with EP relative to TPC (43 vs. 7 days, respectively). Conclusions: The differentiated mechanism of action of EP resulted in a safety profile that is substantially distinguished from that of current widely used therapies for the treatment of women with advanced breast cancer

    Orthogonal surface functionalization through bioactive vapor‐based polymer coatings

    Full text link
    Reactive chemical vapor deposition (CVD) polymerization provides a substrate‐independent platform for effective functionalization of virtually any solid substrates, flat, or curved, even with complex geometries. This article reviews bioactive surface functionalization strategies based on CVD polymerization and highlights commonly used surface chemistries. These reactions include alkyne–azide “click” chemistry, reactions of active esters with amine, aldehydes/ketones with hydrazides and alkoxyamines, thiols with alkenes and alkynes and surface‐initiated atom transfer radical polymerization. The resulting biofunctional surface coatings can facilitate orthogonal immobilization of more than one type of ligand on a substrate. CVD polymer coatings with nanoscale thicknesses are widely applicable in biomedical applications and can be easily integrated into micro‐ and nanodevice fabrication. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131 , 40315.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106951/1/app40315.pd

    Health-related quality of life in patients with locally recurrent or metastatic breast cancer treated with etirinotecan pegol versus treatment of physician’s choice: Results from the randomised phase III BEACON trial

    Get PDF
    Background: Health-related quality of life (HRQoL) enhances understanding of treatment effects that impact clinical decision-making. Although the primary end-point was not achieved, the BEACON (BrEAst Cancer Outcomes with NKTR-102) trial established etirinotecan pegol, a long-acting topoisomerase-1 (TOP1) inhibitor, as a promising therapeutic for patients with advanced/metastatic breast cancer (MBC) achieving clinically meaningful benefits in median overall survival (OS) for patients with stable brain metastases, with liver metastases or ≥ 2 sites of metastatic disease compared to treatment of physician’s choice (TPC). Reported herein are the findings from the preplanned secondary end-point of HRQoL. Patients and methods: HRQoL, assessed by European Organisation for Research and Treatment of Cancer (EORTC) Quality of Life Questionnaire-Core 30 (QLQ-C30) (version 3.0) supplemented by the breast cancer-specific Quality of Life Questionnaire (QLQ-BR23), was evaluated post randomisation in 733 of 852 patients with either anthracycline-, taxane- and capecitabine-pretreated locally recurrent or MBC randomised to etirinotecan pegol (n = 378; 145 mg/m2 every 3 weeks (q3wk)) or single-agent TPC (n = 355). Patients completed assessments at screening, every 8 weeks (q8wk) during treatment, and end-of-treatment. Changes from baseline were analysed, and the proportions of patients achieving differences (≥5 points) in HRQoL scores were compared. Results: Differences were seen favouring etirinotecan pegol up to 32 weeks for global health status (GHS) and physical functioning scales (P &lt; 0.02); numerical improvement was reported in other functional scales. The findings from HRQoL symptom scales were consistent with adverse event profiles; etirinotecan pegol was associated with worsening gastrointestinal symptoms whereas TPC was associated with worsened dyspnoea and other systemic side-effects. Analysis of GHS and physical functioning at disease progression showed a decline in HRQoL in both treatment arms, with a mean change from baseline of −9.4 and −10.8 points, respectively. Conclusion: There was evidence of benefit associated with etirinotecan pegol compared with current standard of care agents in multiple HRQoL measurements, including global health status and physical functioning, despite worse gastrointestinal symptoms (e.g. diarrhoea). Patients in both arms had a decline in HRQoL at disease progression. Study number: NCT01492101

    Bevacizumab plus paclitaxel versus placebo plus paclitaxel as first-line therapy for HER2-negative metastatic breast cancer (MERiDiAN): A double-blind placebo-controlled randomised phase III trial with prospective biomarker evaluation

    Get PDF
    Aim: MERiDiAN evaluated plasma vascular endothelial growth factor-A (pVEGF-A) prospectively as a predictive biomarker for bevacizumab efficacy in metastatic breast cancer (mBC). Methods: In this double-blind placebo-controlled randomised phase III trial, eligible patients had HER2-negative mBC previously untreated with chemotherapy. pVEGF-A was measured before randomisation to paclitaxel 90 mg/m2 on days 1, 8 and 15 with either placebo or bevacizumab 10 mg/kg on days 1 and 15, repeated every 4 weeks until disease progression, unacceptable toxicity or consent withdrawal. Stratification factors were baseline pVEGF-A, prior adjuvant chemotherapy, hormone receptor status and geographic region. Co-primary endpoints were investigator-assessed progression-free survival (PFS) in the intent-to-treat and pVEGF-Ahigh populations. Results: Of 481 patients randomised (242 placeboepaclitaxel; 239 bevacizumabepaclitaxel), 471 received study treatment. The stratified PFS hazard ratio was 0.68 (99% confidence interval, 0.51e0.91; log-rank p Z 0.0007) in the intent-to-treat population (median 8.8 months with placeboepaclitaxel versus 11.0 months with bevacizumabepaclitaxel) and 0.64 (96% con-fidence interval, 0.47e0.88; log-rank p Z 0.0038) in the pVEGF-Ahigh subgroup. The PFS treatment-by-VEGF-A interaction p value (secondary end-point) was 0.4619. Bevacizumab was associated with increased incidences of bleeding (all grades: 45% versus 27% with placebo), neutropenia (all grades: 39% versus 29%; grade 3: 25% versus 13%) and hypertension (all grades: 31% versus 13%; grade 3: 11% versus 4%). Conclusion: The significant PFS improvement with bevacizumab is consistent with previous placebo-controlled first-line trials in mBC. Results do not support using baseline pVEGF-A to identify patients benefitting most from bevacizumab. Clinical trials registration: ClinicalTrials.gov NCT01663727

    aHUS caused by complement dysregulation: new therapies on the horizon

    Get PDF
    Atypical hemolytic uremic syndrome (aHUS) is a heterogeneous disease that is caused by defective complement regulation in over 50% of cases. Mutations have been identified in genes encoding both complement regulators [complement factor H (CFH), complement factor I (CFI), complement factor H-related proteins (CFHR), and membrane cofactor protein (MCP)], as well as complement activators [complement factor B (CFB) and C3]. More recently, mutations have also been identified in thrombomodulin (THBD), an anticoagulant glycoprotein that plays a role in the inactivation of C3a and C5a. Inhibitory autoantibodies to CFH account for an additional 5–10% of cases and can occur in isolation or in association with mutations in CFH, CFI, CFHR 1, 3, 4, and MCP. Plasma therapies are considered the mainstay of therapy in aHUS secondary to defective complement regulation and may be administered as plasma infusions or plasma exchange. However, in certain cases, despite initiation of plasma therapy, renal function continues to deteriorate with progression to end-stage renal disease and renal transplantation. Recently, eculizumab, a humanized monoclonal antibody against C5, has been described as an effective therapeutic strategy in the management of refractory aHUS that has failed to respond to plasma therapy. Clinical trials are now underway to further evaluate the efficacy of eculizumab in the management of both plasma-sensitive and plasma-resistant aHUS

    Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure.

    Get PDF
    Numerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N = 48,607), we identified at genome-wide significance (P = 2.7 × 10(-8) to P = 2.3 × 10(-13)) four new PP loci (at 4q12 near CHIC2, 7q22.3 near PIK3CG, 8q24.12 in NOV and 11q24.3 near ADAMTS8), two new MAP loci (3p21.31 in MAP4 and 10q25.3 near ADRB1) and one locus associated with both of these traits (2q24.3 near FIGN) that has also recently been associated with SBP in east Asians. For three of the new PP loci, the estimated effect for SBP was opposite of that for DBP, in contrast to the majority of common SBP- and DBP-associated variants, which show concordant effects on both traits. These findings suggest new genetic pathways underlying blood pressure variation, some of which may differentially influence SBP and DBP

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO’s second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h95%0=3.47×10−25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering

    Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A

    Get PDF
    On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of the near-simultaneous temporal and spatial observation of GRB 170817A and GW170817 occurring by chance is 5.0×1085.0\times {10}^{-8}. We therefore confirm binary neutron star mergers as a progenitor of short GRBs. The association of GW170817 and GRB 170817A provides new insight into fundamental physics and the origin of short GRBs. We use the observed time delay of (+1.74±0.05)s(+1.74\pm 0.05)\,{\rm{s}} between GRB 170817A and GW170817 to: (i) constrain the difference between the speed of gravity and the speed of light to be between 3×1015-3\times {10}^{-15} and +7×1016+7\times {10}^{-16} times the speed of light, (ii) place new bounds on the violation of Lorentz invariance, (iii) present a new test of the equivalence principle by constraining the Shapiro delay between gravitational and electromagnetic radiation. We also use the time delay to constrain the size and bulk Lorentz factor of the region emitting the gamma-rays. GRB 170817A is the closest short GRB with a known distance, but is between 2 and 6 orders of magnitude less energetic than other bursts with measured redshift. A new generation of gamma-ray detectors, and subthreshold searches in existing detectors, will be essential to detect similar short bursts at greater distances. Finally, we predict a joint detection rate for the Fermi Gamma-ray Burst Monitor and the Advanced LIGO and Virgo detectors of 0.1-1.4 per year during the 2018-2019 observing run and 0.3-1.7 per year at design sensitivity
    corecore