1,463 research outputs found

    Measuring Long-Range 13C–13C Correlations on a Surface under Natural Abundance Using Dynamic Nuclear Polarization-Enhanced Solid-State Nuclear Magnetic Resonance

    Get PDF
    We report that spatial (\u3c1 \u3enm) proximity between different molecules in solid bulk materials and, for the first time, different moieties on the surface of a catalyst, can be established without isotope enrichment by means of homonuclear CHHC solid-state nuclear magnetic resonance experiment. This 13C–13C correlation measurement, which hitherto was not possible for natural-abundance solids, was enabled by the use of dynamic nuclear polarization. Importantly, it allows the study of long-range correlations in a variety of materials with high resolution

    High Throughput Screening of 3D Printable Resins: Adjusting the Surface and Catalytic Properties of Multifunctional Architectures

    Get PDF
    Identification of 3D printable materials is crucial to expand the breadth of physical and chemical properties attainable by additive manufacturing. Stereolithography (SLA), a widespread 3D printing method based on resin photo-polymerization, is ideally suited for exploring a large variety of monomers to produce functional three-dimensional solids of diverse properties. However, for most of the commercially available SLA 3D printers, screening monomers and resin compositions requires large volumes (~150 mL) in each printing cycle, making the process costly and inefficient. Herein, a high throughput block (HTB) adaptor was developed to screen arrays of monomers and resin compositions, consuming lower volumes (\u3c 2 mL) and less time per print (\u3c 1/16 based on a 44 matrix) than using the original hardware. Using this approach, a library of materials with different surface hydrophobicities were 3D printed by including long chain acrylates in the resins. In addition, several metal salts were dissolved in an acrylic acid-based resin, 3D printed and screened as heterogeneous catalysts for the selective aerobic oxidation of benzyl alcohol to benzaldehyde. Cu(II)-based resins produced the most active structures. Combinations of Cu(II) and long chain acrylate monomers were then used to 3D print complex catalytic architectures with varying degrees of hydrophobicity. Linear relationships were observed between 3D printed surface area, surface hydrophobicity and catalyst performance. For a high surface Schwarz P topology ca. 60 % enhancement in the catalytic activity of Cu(II) was attained by replacing the parent resin with one containing hydrophobic isodecyl groups, indicating that the immediate environment of the catalytic site affected its performance. The HTB enables fast screening of resins for 3D printing multifunctional architectures with intrinsic catalytic activity, tunable surface properties, and minimal waste

    Deactivation of Ceria Supported Palladium through C–C Scission during Transfer Hydrogenation of Phenol with Alcohols

    Get PDF
    The stability of palladium supported on ceria (Pd/CeO2) was studied during liquid flow transfer hydrogenation using primary and secondary alcohols as hydrogen donors. For primary alcohols, the ceria support was reduced to cerium hydroxy carbonate within 14 h and was a contributing factor toward catalyst deactivation. For secondary alcohols, cerium hydroxy carbonate was not observed during the same time period and the catalyst was stable upon prolonged reaction. Regeneration through oxidation/reduction does not restore initial activity likely due to irreversible catalyst restructuring. A deactivation mechanism involving C–C scission of acyl and carboxylate intermediates is propose

    Spatial distribution of organic functional groups supported on mesoporous silica nanoparticles (2): a study by 1H triple-quantum fast-MAS solid-state NMR

    Get PDF
    The distribution of organic functional groups attached to the surface of mesoporous silica nanoparticles (MSNs) via co-condensation was scrutinized using 1D and 2D 1H solid-state NMR, including the triple-quantum/single-quantum (TQ/SQ) homonuclear correlation technique. The excellent sensitivity of 1H NMR and high resolution provided by fast magic angle spinning (MAS) allowed us to study surfaces with very low concentrations of aminopropyl functional groups. The sequential process, in which the injection of tetraethyl orthosilicate (TEOS) into the aqueous mother liquor was followed by dropwise addition of the organosilane precursor, resulted in deployment of organic groups on the surface, which were highly clustered even in a sample with a very low loading of ∼0.1 mmol g−1. The underlying mechanism responsible for clustering could involve fast aggregation of the aminopropyltrimethoxysilane (APTMS) precursor within the liquid phase, and/or co-condensation of the silica-bound molecules. Understanding the deposition process and the resulting topology of surface functionalities with atomic-scale resolution, can help to develop novel approaches to the synthesis of complex inorganic–organic hybrid materials
    • …
    corecore