88 research outputs found
TILLING in the two-rowed barley cultivar 'Barke' reveals preferred sites of functional diversity in the gene HvHox1
<p>Abstract</p> <p>Background</p> <p>The economic importance of cereals such as barley, and the demand for improved yield and quality require a better understanding of the genetic components that modulate biologically and commercially relevant traits. While <it>Arabidopsis thaliana </it>is the premiere model plant system, the spectrum of its traits cannot address all of the fundamental questions of crop plant development. Unlike <it>Arabidopsis</it>, barley is both a crop and a model system for scientific research, and it is increasingly being used for genetic and molecular investigations into the conserved biological processes of cereals. A common challenge in genetic studies in plants with large genomes arises from the very time-consuming work of associating mutant phenotypes with gene sequence information, especially if insertion mutagenesis is not routine, as in barley. Reverse genetics based on chemical mutagenesis represents the best solution to this obstacle.</p> <p>Findings</p> <p>In barley, we generated a new TILLING (Targeting Local Lesions IN Genomes) resource comprising 10,279 M<sub>2 </sub>mutants in the two-rowed malting cultivar 'Barke,' which has been used in the generation of other genomic resources in barley (~150,000 ESTs, DH mapping population). The value of this new resource was tested using selected candidate genes. An average frequency of approximately one mutation per 0.5 Mb was determined by screening ten fragments of six different genes. The ethyl methanesulphonate (EMS)mutagenesis efficiency was studied by recording and relating the mutagenesis-dependent effects found in the three mutant generations (M<sub>1</sub>-M<sub>3</sub>). A detailed analysis was performed for the homeodomain-leucine-zipper (HD-ZIP) gene <it>HvHox1</it>. Thirty-one mutations were identified by screening a 1,270-bp fragment in 7,348 M<sub>2 </sub>lines. Three of the newly identified mutants exhibited either a six-rowed or an <it>intermedium</it>-spike phenotype, and one mutant displayed a significantly altered spikelet morphology compared to that of the 'Barke' wild type. Our results indicate a bias in the frequency of independent functional mutations at specific base pair (bp) positions within the gene <it>HvHox1</it>.</p> <p>Conclusions</p> <p>A new TILLING population was developed as a resource for high-throughput gene discovery in an alternative barley germplasm. Pilot screening demonstrated a similar or even slightly higher mutation frequency when compared to previously published barley TILLING populations that should allow for the identification of diverse allelic variation. Partial phenotypic evaluation of the M<sub>2 </sub>and M<sub>3 </sub>generations has revealed the presence of a wide spectrum of morphological diversity that highlights the great potential of this resource for use in forward genetic screens. Altogether, our study shows the efficiency of screening and the applicability of the new TILLING population for genetic studies in the barley crop model system.</p
A guide to barley mutants
BACKGROUND: Mutants have had a fundamental impact upon scientific and applied genetics. They have paved the way for the molecular and genomic era, and most of today's crop plants are derived from breeding programs involving mutagenic treatments.RESULTS: Barley (Hordeum vulgare L.) is one of the most widely grown cereals in the world and has a long history as a crop plant. Barley breeding started more than 100 years ago and large breeding programs have collected and generated a wide range of natural and induced mutants, which often were deposited in genebanks around the world. In recent years, an increased interest in genetic diversity has brought many historic mutants into focus because the collections are regarded as valuable resources for understanding the genetic control of barley biology and barley breeding. The increased interest has been fueled also by recent advances in genomic research, which provided new tools and possibilities to analyze and reveal the genetic diversity of mutant collections.CONCLUSION: Since detailed knowledge about phenotypic characters of the mutants is the key to success of genetic and genomic studies, we here provide a comprehensive description of mostly morphological barley mutants. The review is closely linked to the International Database for Barley Genes and Barley Genetic Stocks ( bgs.nordgen.org ) where further details and additional images of each mutant described in this review can be found.</p
A guide to barley mutants
BACKGROUND: Mutants have had a fundamental impact upon scientific and applied genetics. They have paved the way for the molecular and genomic era, and most of today's crop plants are derived from breeding programs involving mutagenic treatments.RESULTS: Barley (Hordeum vulgare L.) is one of the most widely grown cereals in the world and has a long history as a crop plant. Barley breeding started more than 100 years ago and large breeding programs have collected and generated a wide range of natural and induced mutants, which often were deposited in genebanks around the world. In recent years, an increased interest in genetic diversity has brought many historic mutants into focus because the collections are regarded as valuable resources for understanding the genetic control of barley biology and barley breeding. The increased interest has been fueled also by recent advances in genomic research, which provided new tools and possibilities to analyze and reveal the genetic diversity of mutant collections.CONCLUSION: Since detailed knowledge about phenotypic characters of the mutants is the key to success of genetic and genomic studies, we here provide a comprehensive description of mostly morphological barley mutants. The review is closely linked to the International Database for Barley Genes and Barley Genetic Stocks ( bgs.nordgen.org ) where further details and additional images of each mutant described in this review can be found.</p
Genetic control of tracheid properties in Norway spruce wood
Through the use of genome-wide association studies (GWAS) mapping it is possible to establish the genetic basis of phenotypic trait variation. Our GWAS study presents the first such effort in Norway spruce (Picea abies (L). Karst.) for the traits related to wood tracheid characteristics. The study employed an exome capture genotyping approach that generated 178 101 Single Nucleotide Polymorphisms (SNPs) from 40 018 probes within a population of 517 Norway spruce mother trees. We applied a least absolute shrinkage and selection operator (LASSO) based association mapping method using a functional multi-locus mapping approach, with a stability selection probability method as the hypothesis testing approach to determine significant Quantitative Trait Loci (QTLs). The analysis has provided 30 significant associations, the majority of which show specific expression in wood-forming tissues or high ubiquitous expression, potentially controlling tracheids dimensions, their cell wall thickness and microfibril angle. Among the most promising candidates based on our results and prior information for other species are: Picea abies BIG GRAIN 2 (PabBG2) with a predicted function in auxin transport and sensitivity, and MA_373300g0010 encoding a protein similar to wall-associated receptor kinases, which were both associated with cell wall thickness. The results demonstrate feasibility of GWAS to identify novel candidate genes controlling industrially-relevant tracheid traits in Norway spruce
Genome-wide association study identified novel candidate loci affecting wood formation in Norway spruce
Norway spruce is a boreal forest tree species of significant ecological and economic importance. Hence there is a strong imperative to dissect the genetics underlying important wood quality traits in the species. We performed a functional genome-wide association study (GWAS) of 17 wood traits in Norway spruce using 178 101 single nucleotide polymorphisms (SNPs) generated from exome genotyping of 517 mother trees. The wood traits were defined using functional modelling of wood properties across annual growth rings. We applied a Least Absolute Shrinkage and Selection Operator (LASSO-based) association mapping method using a functional multilocus mapping approach that utilizes latent traits, with a stability selection probability method as the hypothesis testing approach to determine a significant quantitative trait locus. The analysis provided 52 significant SNPs from 39 candidate genes, including genes previously implicated in wood formation and tree growth in spruce and other species. Our study represents a multilocus GWAS for complex wood traits in Norway spruce. The results advance our understanding of the genetics influencing wood traits and identifies candidate genes for future functional studies.Peer reviewe
Risk governance in organizations
Dieses Buch dokumentiert 10 Jahre Risk-Governance-Forschung an der Universität Siegen. In 50 Beiträgen reflektieren Forscher und Praktiker Risk Governance vor dem Hintergrund ihrer eigenen Forschungen und/oder Erfahrungen und geben jeweils einen Entwicklungsimpuls für die Zukunft der Risk Governance. Das Buch zeigt die große Bandbreite und Tiefe des Forschungsgebietes auf und diskutiert Grundannahmen, Implementierungsfragen, die Rolle der Risk Governance als Transformationsmotor, ihre Wirkung in den verschiedenen betrieblichen Funktionen, Entwicklungsperspektiven und den Beitrag der Risk Governance zu einer nachhaltigen Ausrichtung von Unternehmen.This book documents 10 years of risk governance research at the University of Siegen. In 50 contributions, researchers and practitioners reflect on risk governance against the background of their own research and/or experience and provide a development impetus for the future of risk governance. The book shows the wide range and depth of the research field and discusses basic assumptions, implementation issues, the role of risk governance as transformation engine, its impact in the various operational functions, development perspectives, and the contribution of risk governance to a sustainable orientation of companies
Repositioning of the global epicentre of non-optimal cholesterol
High blood cholesterol is typically considered a feature of wealthy western countries(1,2). However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world(3) and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health(4,5). However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol-which is a marker of cardiovascular riskchanged from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million-4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world.Peer reviewe
Height and body-mass index trajectories of school-aged children and adolescents from 1985 to 2019 in 200 countries and territories: a pooled analysis of 2181 population-based studies with 65 million participants
Summary Background Comparable global data on health and nutrition of school-aged children and adolescents are scarce. We aimed to estimate age trajectories and time trends in mean height and mean body-mass index (BMI), which measures weight gain beyond what is expected from height gain, for school-aged children and adolescents. Methods For this pooled analysis, we used a database of cardiometabolic risk factors collated by the Non-Communicable Disease Risk Factor Collaboration. We applied a Bayesian hierarchical model to estimate trends from 1985 to 2019 in mean height and mean BMI in 1-year age groups for ages 5–19 years. The model allowed for non-linear changes over time in mean height and mean BMI and for non-linear changes with age of children and adolescents, including periods of rapid growth during adolescence. Findings We pooled data from 2181 population-based studies, with measurements of height and weight in 65 million participants in 200 countries and territories. In 2019, we estimated a difference of 20 cm or higher in mean height of 19-year-old adolescents between countries with the tallest populations (the Netherlands, Montenegro, Estonia, and Bosnia and Herzegovina for boys; and the Netherlands, Montenegro, Denmark, and Iceland for girls) and those with the shortest populations (Timor-Leste, Laos, Solomon Islands, and Papua New Guinea for boys; and Guatemala, Bangladesh, Nepal, and Timor-Leste for girls). In the same year, the difference between the highest mean BMI (in Pacific island countries, Kuwait, Bahrain, The Bahamas, Chile, the USA, and New Zealand for both boys and girls and in South Africa for girls) and lowest mean BMI (in India, Bangladesh, Timor-Leste, Ethiopia, and Chad for boys and girls; and in Japan and Romania for girls) was approximately 9–10 kg/m2. In some countries, children aged 5 years started with healthier height or BMI than the global median and, in some cases, as healthy as the best performing countries, but they became progressively less healthy compared with their comparators as they grew older by not growing as tall (eg, boys in Austria and Barbados, and girls in Belgium and Puerto Rico) or gaining too much weight for their height (eg, girls and boys in Kuwait, Bahrain, Fiji, Jamaica, and Mexico; and girls in South Africa and New Zealand). In other countries, growing children overtook the height of their comparators (eg, Latvia, Czech Republic, Morocco, and Iran) or curbed their weight gain (eg, Italy, France, and Croatia) in late childhood and adolescence. When changes in both height and BMI were considered, girls in South Korea, Vietnam, Saudi Arabia, Turkey, and some central Asian countries (eg, Armenia and Azerbaijan), and boys in central and western Europe (eg, Portugal, Denmark, Poland, and Montenegro) had the healthiest changes in anthropometric status over the past 3·5 decades because, compared with children and adolescents in other countries, they had a much larger gain in height than they did in BMI. The unhealthiest changes—gaining too little height, too much weight for their height compared with children in other countries, or both—occurred in many countries in sub-Saharan Africa, New Zealand, and the USA for boys and girls; in Malaysia and some Pacific island nations for boys; and in Mexico for girls. Interpretation The height and BMI trajectories over age and time of school-aged children and adolescents are highly variable across countries, which indicates heterogeneous nutritional quality and lifelong health advantages and risks
- …