11 research outputs found

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    β-Aminoisobutyric Acid Induces Browning of White Fat and Hepatic β-Oxidation and Is Inversely Correlated with Cardiometabolic Risk Factors

    Get PDF
    The transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) regulates metabolic genes in skeletal muscle and contributes to the response of muscle to exercise. Muscle PGC-1α transgenic expression and exercise both increase the expression of thermogenic genes within white adipose. How the PGC-1α-mediated response to exercise in muscle conveys signals to other tissues remains incompletely defined. We employed a metabolomic approach to examine metabolites secreted from myocytes with forced expression of PGC-1α, and identified β-aminoisobutyric acid (BAIBA) as a small molecule myokine. BAIBA increases the expression of brown adipocyte-specific genes in white adipocytes and β-oxidation in hepatocytes both in vitro and in vivo through a PPARα-mediated mechanism, induces a brown adipose-like phenotype in human pluripotent stem cells, and improves glucose homeostasis in mice. In humans, plasma BAIBA concentrations are increased with exercise and inversely associated with metabolic risk factors. BAIBA may thus contribute to exercise-induced protection from metabolic diseases

    Investigating Drivers of Native Plant Production in the United States Green Industry

    No full text
    Native plant use in United States (U.S.) ornamental landscapes is expected to increase in upcoming years. Various market, production, and economic factors may influence a nursery firm’s likelihood of growing and selling native plants. The objective of this study was to investigate production-related factors (e.g., integrated pest management (IPM) strategies, firm characteristics, and plant types sold) that impact commercial native plant sales in the U.S. The research questions included the following: (a) What production factors drive growers to produce native plants? (b) What production factors increase native plant sales? Insights on production-related factors that influence native plant production can be used to understand the decision-making process of native plant growers and encourage additional production of native plants to meet expected increases in demand. Data from the 2014 and 2019 Green Industry Research Consortium’s National Green Industry Survey were used to address this research objective. Green industry firms were categorized by their annual native plant sales, and an ordered probit model was used to assess differences in IPM strategies, firm characteristics, number of plant types grown, sales attributed to different plant types, and actions to address labor issues. In general, firms selling native plants participated in more IPM strategies, sold a more diverse array of plants, and used more sales avenues than non-native plant firms. IPM strategies varied by native plant sales, with firms generating higher native plant sales exhibiting a higher likelihood of removing infested plants, circulating air, managing irrigation, using beneficial insects, and planting pest resistant varieties as part of their IPM strategy than non-native plant firms. Annual native sales and paying higher wages were impacted by plant types sold. Understanding current production and business practices can help identify practices resulting in market success for native plants, the use of which can enhance sustainable landscapes by increasing biodiversity and ecosystem services

    Metabolite Profiling Identifies Pathways Associated With Metabolic Risk in Humans

    No full text
    Background-Although metabolic risk factors are known to cluster in individuals who are prone to developing diabetes mellitus and cardiovascular disease, the underlying biological mechanisms remain poorly understood. Methods and Results-To identify pathways associated with cardiometabolic risk, we used liquid chromatography/mass spectrometry to determine the plasma concentrations of 45 distinct metabolites and to examine their relation to cardiometabolic risk in the Framingham Heart Study (FHS; n=1015) and the Malmo Diet and Cancer Study (MDC; n=746). We then interrogated significant findings in experimental models of cardiovascular and metabolic disease. We observed that metabolic risk factors (obesity, insulin resistance, high blood pressure, and dyslipidemia) were associated with multiple metabolites, including branched-chain amino acids, other hydrophobic amino acids, tryptophan breakdown products, and nucleotide metabolites. We observed strong associations of insulin resistance traits with glutamine (standardized regression coefficients, -0.04 to -0.22 per 1-SD change in log-glutamine; P<0.001), glutamate (0.05 to 0.14; P<0.001), and the glutamine-toglutamate ratio (-0.05 to -0.20; P<0.001) in the discovery sample (FHS); similar associations were observed in the replication sample (MDC). High glutamine-to-glutamate ratio was associated with lower risk of incident diabetes mellitus in FHS (odds ratio, 0.79; adjusted P=0.03) but not in MDC. In experimental models, administration of glutamine in mice led to both increased glucose tolerance (P=0.01) and decreased blood pressure (P=0.05). Conclusions-Biochemical profiling identified circulating metabolites not previously associated with metabolic traits. Experimentally interrogating one of these pathways demonstrated that excess glutamine relative to glutamate, resulting from exogenous administration, is associated with reduced metabolic risk in mice. (Circulation. 2012;125:2222-2231.

    BIOLOGICS USE in SLE in 23 CENTERS - DATA FROM the INTERNATIONAL REGISTRY for BIOLOGICS in SLE

    No full text
    Karolinska Univ Hosp, Stockholm, SwedenRigshosp, DK-2100 Copenhagen, DenmarkCedars Sinai UCLA, Los Angeles, CA USADalhousie Univ & Capital Hlth, Halifax, NS, CanadaJohns Hopkins Univ Hosp, Baltimore, MD 21287 USAUCL, London, EnglandMcGill UHC RI, Montreal, PQ, CanadaMcGill Univ, Ctr Hlth, Montreal, PQ, CanadaMcGill UHC RVH, Montreal, PQ, CanadaKarolinska Inst, Stockholm, SwedenHanyang Univ, Hosp Rheumat Dis, Seoul 133791, South KoreaHosp Clin Barcelona, Barcelona, SpainHosp Cruces, Bizkaia, SpainHosp Virgen Rocio, Seville, SpainHosp Miguel Servet, Zaragoza, SpainHosp San Cecilio, Granada, SpainHosp Son Dureta, Palma de Mallorca, SpainHosp Carlos Haya, Malaga, SpainIstanbul Univ, Istanbul Fac Med, Istanbul, TurkeyNorthwestern Univ, Feinberg Sch Med, Chicago, IL 60611 USAUniv Manitoba, Winnipeg, MB, CanadaCareggi Hosp Florence, Florence, ItalyUniv Szeged, Szeged, HungaryUniv Padua, Padua, ItalyUniv Debrecen, H-4012 Debrecen, HungaryHlth Sci Ctr, Debrecen, HungaryUniv Cattolica Sacro Cuore, Div Rheumatol, I-00168 Rome, ItalyCatholic Univ, Rheumatol Unit, Rome, ItalyUniversidade Federal de São Paulo, Escola Paulista Med, São Paulo, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, São Paulo, BrazilWeb of Scienc

    The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project

    Get PDF
    The PREDICTS project—Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)—has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity

    The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project

    No full text

    Mitochondrial physiology: Gnaiger Erich et al ― MitoEAGLE Task Group

    No full text
    corecore