107 research outputs found

    pH-gradient chromatofocusing of proteins on a chip

    Get PDF
    We present a novel microfluidic system for the pH-gradient focusing of proteins with the integration of 16 parallel micro-mixers, a micro-column, and a multiplexer. In this work we successfully achieved the creation of 16 non-linear gradients and the generation of a solid-phase micro-column for the realization of anion exchange chromatography on a single chip. With the device we demonstrated the separation of a protein mixture of R-phycoerythrin and FITC-BSA based on pH-gradient chromatofocusing

    Systematic Investigation of Insulin Fibrillation on a Chip

    Get PDF
    A microfluidic protein aggregation device (microPAD) that allows the user to perform a series of protein incubations with various concentrations of two reagents is demonstrated. The microfluidic device consists of 64 incubation chambers to perform individual incubations of the protein at 64 specific conditions. Parallel processes of metering reagents, stepwise concentration gradient generation, and mixing are achieved simultaneously by pneumatic valves. Fibrillation of bovine insulin was selected to test the device. The effect of insulin and sodium chloride (NaCl) concentration on the formation of fibrillar structures was studied by observing the growth rate of partially folded protein, using the fluorescent marker Thioflavin-T. Moreover, dual gradients of different NaCl and hydrochloric acid (HCl) concentrations were formed, to investigate their interactive roles in the formation of insulin fibrils and spherulites. The chip-system provides a bird’s eye view on protein aggregation, including an overview of the factors that affect the process and their interactions. This microfluidic platform is potentially useful for rapid analysis of the fibrillation of proteins associated with many misfolding-based diseases, such as quantitative and qualitative studies on amyloid growth

    Evolutionarily distinct bacteriophage endolysins featuring conserved peptidoglycan cleavage sites protect mice from MRSA infection

    Get PDF
    Objectives In the light of increasing drug resistance in Staphylococcus aureus, bacteriophage endolysins [peptidoglycan hydrolases (PGHs)] have been suggested as promising antimicrobial agents. The aim of this study was to determine the antimicrobial activity of nine enzymes representing unique homology groups within a diverse class of staphylococcal PGHs. Methods PGHs were recombinantly expressed, purified and tested for staphylolytic activity in multiple in vitro assays (zymogram, turbidity reduction assay and plate lysis) and against a comprehensive set of strains (S. aureus and CoNS). PGH cut sites in the staphylococcal peptidoglycan were determined by biochemical assays (Park-Johnson and Ghuysen procedures) and MS analysis. The enzymes were tested for their ability to eradicate static S. aureus biofilms and compared for their efficacy against systemic MRSA infection in a mouse model. Results Despite similar modular architectures and unexpectedly conserved cleavage sites in the peptidoglycan (conferred by evolutionarily divergent catalytic domains), the enzymes displayed varying degrees of in vitro lytic activity against numerous staphylococcal strains, including cell surface mutants and drug-resistant strains, and proved effective against static biofilms. In a mouse model of systemic MRSA infection, six PGHs provided 100% protection from death, with animals being free of clinical signs at the end of the experiment. Conclusions Our results corroborate the high potential of PGHs for treatment of S. aureus infections and reveal unique antimicrobial and biochemical properties of the different enzymes, suggesting a high diversity of potential applications despite highly conserved peptidoglycan target site

    Shifted Excitation Raman Difference Spectroscopy Applied to Extraterrestrial Particles Returned from the Asteroid Itokawa

    Get PDF
    Two extraterrestrial particles from the asteroid Itokawa are investigated applying Shifted Excitation Raman Difference Spectroscopy (SERDS). These particles were returned by the Hayabusa mission of the Japanese Space Agency JAXA. For SERDS a diode laser based microsystem light source at 488 nm is used for excitation. It has been found that fluorescence signals masking the Raman spectral features of interest can be substantially separated by applying SERDS. Therefore, SERDS improves the information obtained from the Raman spectra and enables a reliable analysis for investigations on extraterrestrial samples

    The twilight of the Liberal Social Contract? On the Reception of Rawlsian Political Liberalism

    Get PDF
    This chapter discusses the Rawlsian project of public reason, or public justification-based 'political' liberalism, and its reception. After a brief philosophical rather than philological reconstruction of the project, the chapter revolves around a distinction between idealist and realist responses to it. Focusing on political liberalism’s critical reception illuminates an overarching question: was Rawls’s revival of a contractualist approach to liberal legitimacy a fruitful move for liberalism and/or the social contract tradition? The last section contains a largely negative answer to that question. Nonetheless the chapter's conclusion shows that the research programme of political liberalism provided and continues to provide illuminating insights into the limitations of liberal contractualism, especially under conditions of persistent and radical diversity. The programme is, however, less receptive to challenges to do with the relative decline of the power of modern states

    Constitutivism

    Get PDF
    A brief explanation and overview of constitutivism
    corecore