30 research outputs found
Uncertainty in pore size distribution derived from adsorption isotherms: II. adsorption integral approach
Uncertainty in the amount adsorbed in manometric adsorption isotherm measurements is well established. Here, we extend uncertainty methodologies from adsorption isotherm data uncertainty and apply them to calculate pore size distributions based on adsorption integral methods. The analyses consider as variables: uncertainty in adsorption isotherm data, regularization parameter, molecular potential model, and the number of single pore isotherms calculated with an associated quadrature interval. We demonstrate how the calculated pore size distribution is quite insensitive to the uncertainty in experimental data, but in contrast, the uncertainty in the experimental data affects the calculated value of the optimized regularization parameter which, in turn, leads to considerable variation in the calculated pore size distribution. The calculated pore size distribution is also shown to be highly dependent on the potential model selected and on the number of single pore isotherms applied to the inversion process. We conclude and suggest a quantitative comparison between calculated pore size distributions should be discouraged unless the uncertainty in the experimental data is relatively small and, default values for regularization parameters, potential models, the number of single pore isotherms and their distribution are exactly the same for each pore size distribution evaluation
Uncertainty in pore size distribution derived from adsorption isotherms: I. classical methods
Procedures for propagation of uncertainty in pore size distribution calculation based on classical methods for both micro and mesoporous materials are described. Uncertainty in experimental adsorption isotherm data and uncertainty in temperature are introduced as the main sources for uncertainty in height and position of peaks of PSD determined via classical mesopore size distribution determination method. Uncertainty in PSD derived from classical micropore size distribution methods mainly arises from uncertainty in experimental isotherm data. Calculation step size is shown to have some effects on magnitude of uncertainty in micropore calculation. Micropore size distribution calculations are also highly sensitive to the adsorptive molecular diameter
Control of the pore size distribution and its spatial homogeneity in particulate activated carbon
There are circumstances where it is desirable to achieve a particular, optimal, pore size distribution (PSD) in a carbon, including in the molecular sieving, gas storage, CO2-capture and electrochemical energy storage. Activation protocols that cycle a carbon a number of times between a low-temperature oxygen chemisorption process and a higher temperature pyrolysis process have been proposed as a means of yielding such desired PSDs. However, it is shown here that for PFA-based char particles of ∼100 μm in size, only the super-micropores are substantially developed under such an activation protocol, with the ultra-micropores being substantially un-touched. It is also shown that a typical CO2-activation process yields similar control over PSD development. As this process is nearly 15 times faster than the cyclic-O2 protocol and yields larger pore volumes and areas for a given level of conversion, it is to be preferred unless spatial homogeneous porosity within the particles is also desired. If such homogeneity is desired, it is shown here that CO2 activation should continue to be used but at a rate of around one-tenth the typical; this slow rate also has the advantage of producing pore volumes and areas substantially greater than those obtained using the other activation protocols.CH acknowledges a joint scholarship provided by China Scholarship Council (CSC) and the University of Adelaide. SS acknowledges the award of International Postgraduate Research Scholarship (IPRS) from the University of Adelaide. SHM acknowledges the award of a President’s Scholarship from the University of South Australia. The support of the Australian Research Council Discovery Program (DP110101293) is also gratefully acknowledged
Community pharmacists’ knowledge, attitude, and practices towards dispensing antibiotics without prescription (DAwP): a cross-sectional survey in Makkah Province, Saudi Arabia
Objectives: To evaluate knowledge, attitude, and practices of community pharmacists towards dispensing antibiotics without prescription (DAwP) in Makkah Province, Saudi Arabia. Methods: A cross-sectional survey was conducted between January and February 2016 using a structured, validated, and pilot-tested questionnaire. A four-step systematic approach was used to recruit community pharmacists who completed a 28-item questionnaire either in English or Arabic language based on their personal preference. Results: Of the 200 community pharmacists approached, 189 completed the questionnaire. More than two-thirds (70.5%) of the pharmacists were not aware that DAwP is illegal practice. Lack of patient willingness to consult a physician for a non-serious infection (69.9%) and an inability to afford a consultation with a physician (65.3%) were the most common reasons cited for DAwP. A statistically significant association was found between the number of antibiotics dispensed and educating patients about the importance of adherence and completion of the full course of antibiotics (p = 0.007). Conclusions: In general, community pharmacists have a poor understanding of the regulations prohibiting the over-the-counter sale of antibiotics in Saudi Arabia, explaining the high rate of DAwP in the country. A multifaceted approach consisting of educational interventions and improving the access to and affordability of healthcare facilities for the general public is required to effectively reduce DAwP and its negative consequences on public health
Large expert-curated database for benchmarking document similarity detection in biomedical literature search
Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
Uncertainty in pore size distribution derived from adsorption isotherms:I. Classical methods
Abstract not availableS. Hadi Madani, Alexander Badalyan, Mark J. Biggs, Phillip Pendleto
Mine Subsidence Prediction Using Gene Expression Programming Based on Multivariable Symbolic Regression
Accurate prediction of surface subsidence becomes a significant challenge for active industrial companies in coal mining fields due to the importance of the economic impacts of longwall mining-induced subsidence. This article explores a new variant of genetic programming, namely gene expression programming (GEP). The GEP-based method is utilized to present a new mathematical formula for subsidence prediction in longwall coal mining. The derived model includes both geometrical and geological variables. The data set consists of field measurements obtained through 37 longwall panels of Ulan coal mine, NSW, Australia. The GEP-based model concluded satisfactory subsidence prediction outcomes compared to other empirical methods such as NCB, DMR, ACARP, and IPM. The predictive ability of the GEP-based models, which captures the complex nonlinear effects of the critical factors on the magnitude of subsidence, resulted in a statistically significant improvement in predictive capacity compared to the aforementioned empirical methods. The sensitivity analysis results indicated that Panel width and cover thickness with 31% and 23% were the most influential parameters in the proposed model. Also, the extracted seam thickness, thick layer location, and thick layer thickness had 19%, 16%, and 11% impact on the GEP proposed model, respectively
Uncertainty in pore size distribution derived from adsorption isotherms: II. Adsorption integral approach
Uncertainty in the amount adsorbed in manometric adsorption isotherm measurements is well established. Here, we extend uncertainty methodologies from adsorption isotherm data uncertainty and apply them to calculate pore size distributions based on adsorption integral methods. The analyses consider as variables: uncertainty in adsorption isotherm data, regularization parameter, molecular potential model, and the number of single pore isotherms calculated with an associated quadrature interval. We demonstrate how the calculated pore size distribution is quite insensitive to the uncertainty in experimental data, but in contrast, the uncertainty in the experimental data affects the calculated value of the optimized regularization parameter which, in turn, leads to considerable variation in the calculated pore size distribution. The calculated pore size distribution is also shown to be highly dependent on the potential model selected and on the number of single pore isotherms applied to the inversion process. We conclude and suggest a quantitative comparison between calculated pore size distributions should be discouraged unless the uncertainty in the experimental data is relatively small and, default values for regularization parameters, potential models, the number of single pore isotherms and their distribution are exactly the same for each pore size distribution evaluation
Decoding gas-solid interaction effects on adsorption isotherm shape: I. Non-polar adsorptives
A suite of non-polar adsorptives of different kinetic diameters and shape were used to determine adsorption and pore filling mechanism of a well-characterised poly(furfuryl alcohol)-based activated carbon. Triplicate measured Type I adsorption isotherms for each adsorptive were averaged to provide standard deviation in relative pressures and associated amounts adsorbed. Plateau amounts adsorbed for N2, Ar, CH4, and C6H6, provided Gurvitsch volumes averaged to 0.368 ± 0.015 cm3(liq)/g. The calculated Gurvitsch volumes were compared with those derived via the Dubinin-Radushkevich (DR) equation. Additional adsorptives were CO2, iso-butane and SF6. The results of these 7 adsorptives were used to qualitatively analyse and decode a micropore filling adsorption mechanism. The DR equation was also used for further analysis of the pore filling mechanism. Based on the adsorbate-adsorbate and adsorbate-adsorbent interactions, adsorbates were classified into three groups: (a) Non-polar with non-specific interactions (no dipole, no quadrupole, not readily polarizable: Ar, N2, CH4 and iso-butane), adsorbing as a continuous uptake over the observed relative pressure range; (b) Non-polar adsorptives with potential for specific interactions (no dipole, quadrupole moment: CO2 and C6H6), adsorbing as a condensation process over a relatively narrow relative pressure range in a medium pressure range; (c) Halogenated adsorptives (no dipole, no quadrupole, polarizable: SF6), adsorbing with an S-shaped uptake extending over a relatively broad relative pressure range.The authors thank the Australian Research Council discovery program (DP110101293) for funding support and S.H.M also thanks the University of South Australia for a postgraduate research scholarship
Analysis of adsorbate-adsorbate and adsorbate-adsorbent interactions to decode isosteric heats of gas adsorption
A qualitative interpretation is proposed to interpret isosteric heats of adsorption by considering contributions from three general classes of interaction energy: fluid–fluid heat, fluid–solid heat, and fluid—high-energy site (HES) heat. Multiple temperature adsorption isotherms are defined for nitrogen, T=(75, 77, 79) K, argon at T=(85, 87, 89) K, and for water and methanol at T=(278, 288, 298) K on a well-characterized polymer-based, activated carbon. Nitrogen and argon are subjected to isosteric heat analyses; their zero filling isosteric heats of adsorption are consistent with slit-pore, adsorption energy enhancement modelling. Water adsorbs entirely via specific interactions, offering decreasing isosteric heat at low pore filling followed by a constant heat slightly in excess of water condensation enthalpy, demonstrating the effects of micropores. Methanol offers both specific adsorption via the alcohol group and non-specific interactions via its methyl group; the isosteric heat increases at low pore filling, indicating the predominance of non-specific interactions