8 research outputs found

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    DE-IDENTIFICATION TECHNIQUE FOR IOT WIRELESS SENSOR NETWORK PRIVACY PROTECTION

    Get PDF
    [[abstract]]As the IoT ecosystem becoming more and more mature, hardware and software vendors are trying create new value by connecting all kinds of devices together via IoT. IoT devices are usually equipped with sensors to collect data, and the data collected are transmitted over the air via different kinds of wireless connection. To extract the value of the data collected, the data owner may choose to seek for third-party help on data analysis, or even of the data to the public for more insight. In this scenario it is important to protect the released data from privacy leakage. Here we propose that differential privacy, as a de-identification technique, can be a useful approach to add privacy protection to the data released, as well as to prevent the collected from intercepted and decoded during over-the-air transmission. A way to increase the accuracy of the count queries performed on the edge cases in a synthetic database is also presented in this research.[[notice]]補正完

    Image Analysis and Computer Vision: 1996

    No full text
    corecore