1,197 research outputs found

    One-class classifiers based on entropic spanning graphs

    Get PDF
    One-class classifiers offer valuable tools to assess the presence of outliers in data. In this paper, we propose a design methodology for one-class classifiers based on entropic spanning graphs. Our approach takes into account the possibility to process also non-numeric data by means of an embedding procedure. The spanning graph is learned on the embedded input data and the outcoming partition of vertices defines the classifier. The final partition is derived by exploiting a criterion based on mutual information minimization. Here, we compute the mutual information by using a convenient formulation provided in terms of the α\alpha-Jensen difference. Once training is completed, in order to associate a confidence level with the classifier decision, a graph-based fuzzy model is constructed. The fuzzification process is based only on topological information of the vertices of the entropic spanning graph. As such, the proposed one-class classifier is suitable also for data characterized by complex geometric structures. We provide experiments on well-known benchmarks containing both feature vectors and labeled graphs. In addition, we apply the method to the protein solubility recognition problem by considering several representations for the input samples. Experimental results demonstrate the effectiveness and versatility of the proposed method with respect to other state-of-the-art approaches.Comment: Extended and revised version of the paper "One-Class Classification Through Mutual Information Minimization" presented at the 2016 IEEE IJCNN, Vancouver, Canad

    Magnetism and unusual Cu valency in quadruple perovskites

    Full text link
    We study a selection of Cu-containing magnetic quadruple perovskites (CaCu3_{3}Ti4_{4}O12_{12}, LaCu3_{3}Fe4_{4}O12_{12}, and YCu3_{3}Co4_{4}O12_{12}) by ab initio calculations, and show that Cu is in an effective divalent Cu(II)-like state or a trivalent Cu(III) state depending on the choice of octahedral cation. Based on the electronic structure, we also discuss the role of Mott and Zhang-Rice physics in this materials class.Comment: 5 pages, 4 figure

    Tetragonal states from epitaxial strain on metal films

    Full text link
    The tetragonal states produced by isotropic pseudomorphic epitaxial strain in the (001) plane on a tetragonal phase of a crystal are calculated for V, Ti, Rb, Li, K, Sr from first-principles electronic theory. It is shown that each metal has two tetragonal phases corresponding to minima of the total energy with respect to tetragonal deformations, hence are equilibrium phases, and that the equilibrium phases are separated by a region of inherent instability. The equilibrium phase for any strained tetragonal state can thus be uniquely identified. Lattice constants and relative energies of the two phases and the saddle point between them are tabulated, as well as the tetragonal elastic constants of each phase.Comment: 6 pages, 4 figures, appeared in Phys. Rev. B 57, 1971 (1998). Other related publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm

    Anomaly and Change Detection in Graph Streams through Constant-Curvature Manifold Embeddings

    Full text link
    Mapping complex input data into suitable lower dimensional manifolds is a common procedure in machine learning. This step is beneficial mainly for two reasons: (1) it reduces the data dimensionality and (2) it provides a new data representation possibly characterised by convenient geometric properties. Euclidean spaces are by far the most widely used embedding spaces, thanks to their well-understood structure and large availability of consolidated inference methods. However, recent research demonstrated that many types of complex data (e.g., those represented as graphs) are actually better described by non-Euclidean geometries. Here, we investigate how embedding graphs on constant-curvature manifolds (hyper-spherical and hyperbolic manifolds) impacts on the ability to detect changes in sequences of attributed graphs. The proposed methodology consists in embedding graphs into a geometric space and perform change detection there by means of conventional methods for numerical streams. The curvature of the space is a parameter that we learn to reproduce the geometry of the original application-dependent graph space. Preliminary experimental results show the potential capability of representing graphs by means of curved manifold, in particular for change and anomaly detection problems.Comment: To be published in IEEE IJCNN 201

    Change Point Methods on a Sequence of Graphs

    Get PDF
    Given a finite sequence of graphs, e.g., coming from technological, biological, and social networks, the paper proposes a methodology to identify possible changes in stationarity in the stochastic process generating the graphs. In order to cover a large class of applications, we consider the general family of attributed graphs where both topology (number of vertexes and edge configuration) and related attributes are allowed to change also in the stationary case. Novel Change Point Methods (CPMs) are proposed, that (i) map graphs into a vector domain; (ii) apply a suitable statistical test in the vector space; (iii) detect the change --if any-- according to a confidence level and provide an estimate for its time occurrence. Two specific multivariate CPMs have been designed: one that detects shifts in the distribution mean, the other addressing generic changes affecting the distribution. We ground our proposal with theoretical results showing how to relate the inference attained in the numerical vector space to the graph domain, and vice versa. We also show how to extend the methodology for handling multiple change points in the same sequence. Finally, the proposed CPMs have been validated on real data sets coming from epileptic-seizure detection problems and on labeled data sets for graph classification. Results show the effectiveness of what proposed in relevant application scenarios

    Echo State Networks with Self-Normalizing Activations on the Hyper-Sphere

    Get PDF
    Among the various architectures of Recurrent Neural Networks, Echo State Networks (ESNs) emerged due to their simplified and inexpensive training procedure. These networks are known to be sensitive to the setting of hyper-parameters, which critically affect their behaviour. Results show that their performance is usually maximized in a narrow region of hyper-parameter space called edge of chaos. Finding such a region requires searching in hyper-parameter space in a sensible way: hyper-parameter configurations marginally outside such a region might yield networks exhibiting fully developed chaos, hence producing unreliable computations. The performance gain due to optimizing hyper-parameters can be studied by considering the memory--nonlinearity trade-off, i.e., the fact that increasing the nonlinear behavior of the network degrades its ability to remember past inputs, and vice-versa. In this paper, we propose a model of ESNs that eliminates critical dependence on hyper-parameters, resulting in networks that provably cannot enter a chaotic regime and, at the same time, denotes nonlinear behaviour in phase space characterised by a large memory of past inputs, comparable to the one of linear networks. Our contribution is supported by experiments corroborating our theoretical findings, showing that the proposed model displays dynamics that are rich-enough to approximate many common nonlinear systems used for benchmarking

    A characterization of the Edge of Criticality in Binary Echo State Networks

    Full text link
    Echo State Networks (ESNs) are simplified recurrent neural network models composed of a reservoir and a linear, trainable readout layer. The reservoir is tunable by some hyper-parameters that control the network behaviour. ESNs are known to be effective in solving tasks when configured on a region in (hyper-)parameter space called \emph{Edge of Criticality} (EoC), where the system is maximally sensitive to perturbations hence affecting its behaviour. In this paper, we propose binary ESNs, which are architecturally equivalent to standard ESNs but consider binary activation functions and binary recurrent weights. For these networks, we derive a closed-form expression for the EoC in the autonomous case and perform simulations in order to assess their behavior in the case of noisy neurons and in the presence of a signal. We propose a theoretical explanation for the fact that the variance of the input plays a major role in characterizing the EoC

    Reconfigurable photonic integrated mode (de)multiplexer for SDM fiber transmission

    Get PDF
    A photonic integrated circuit for mode multiplexing and demultiplexing in a few-mode fiber is presented and demonstrated. Two 10 Gbit/s channels at the same wavelength and polarization are simultaneously transmitted over modes LP01 and LP11a of a few-mode fiber exploiting the integrated mode MUX and DEMUX. The proposed Indium-Phosphide-based circuits have a good coupling efficiency with fiber modes with mode-dependant loss smaller than 1 dB. Measured mode excitation cross-talk is as low as -20 dB and a channel cross-talk after propagation and demultiplexing of -15 dB is achieved. An operational bandwidth of the full transmission system of at least 10 nm is demonstrated. Both mode MUX and DEMUX are fully reconfigurable and allow a dynamic switch of channel routing in the transmission system

    Change Detection in Multivariate Datastreams: Likelihood and Detectability Loss

    Get PDF
    We address the problem of detecting changes in multivariate datastreams, and we investigate the intrinsic difficulty that change-detection methods have to face when the data dimension scales. In particular, we consider a general approach where changes are detected by comparing the distribution of the log-likelihood of the datastream over different time windows. Despite the fact that this approach constitutes the frame of several change-detection methods, its effectiveness when data dimension scales has never been investigated, which is indeed the goal of our paper. We show that the magnitude of the change can be naturally measured by the symmetric Kullback-Leibler divergence between the pre- and post-change distributions, and that the detectability of a change of a given magnitude worsens when the data dimension increases. This problem, which we refer to as \emph{detectability loss}, is due to the linear relationship between the variance of the log-likelihood and the data dimension. We analytically derive the detectability loss on Gaussian-distributed datastreams, and empirically demonstrate that this problem holds also on real-world datasets and that can be harmful even at low data-dimensions (say, 10)
    • …
    corecore