634 research outputs found

    Super-resolution in turbulent videos: making profit from damage

    Full text link
    It is shown that one can make use of local instabilities in turbulent video frames to enhance image resolution beyond the limit defined by the image sampling rate. The paper outlines the processing algorithm, presents its experimental verification on simulated and real-life videos and discusses its potentials and limitations.Comment: 11 pages, 2 figures. Submitted to Optics Letters, 10-07-0

    Redundancy of stereoscopic images: Experimental Evaluation

    Full text link
    With the recent advancement in visualization devices over the last years, we are seeing a growing market for stereoscopic content. In order to convey 3D content by means of stereoscopic displays, one needs to transmit and display at least 2 points of view of the video content. This has profound implications on the resources required to transmit the content, as well as demands on the complexity of the visualization system. It is known that stereoscopic images are redundant, which may prove useful for compression and may have positive effect on the construction of the visualization device. In this paper we describe an experimental evaluation of data redundancy in color stereoscopic images. In the experiments with computer generated and real life and test stereo images, several observers visually tested the stereopsis threshold and accuracy of parallax measuring in anaglyphs and stereograms as functions of the blur degree of one of two stereo images and color saturation threshold in one of two stereo images for which full color 3D perception with no visible color degradations is maintained. The experiments support a theoretical estimate that one has to add, to data required to reproduce one of two stereoscopic images, only several percents of that amount of data in order to achieve stereoscopic perception

    Integration in the Fourier domain for restoration of a function from its slope : comparison of four methods

    Get PDF
    Altres ajuts: European Community project CTB556-01-4175.In some measurement techniques the profile, f(x), of a function should be obtained from the data on measured slope f'(x) by integration. The slope is measured in a given set of points, and from these data we should obtain the profile with the highest possible accuracy. Most frequently, the integration is carried out by numerical integration methods [Press et al., Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, Cambridge, 1987)] that assume different kinds of polynomial approximation of data between sampling points. We propose the integration of the function in the Fourier domain, by which the most-accurate interpolation is automatically carried out. Analysis of the integration methods in the Fourier domain permits us to easily study and compare the methods' behavior
    corecore