1,786 research outputs found

    On equilibria in duopolies with finite strategy spaces

    Get PDF
    We will call a game a reachable (pure strategy) equilibria game if starting from any strategy by any player, by a sequence of best-response moves we are able to reach a (pure strategy) equilibrium. We give a characterization of all finite strategy space duopolies with reachable equilibria. We describe some applications of the sufficient conditions of the characterization.duopoly, equilibria, revenue management, discrete-choice theory

    On bounds for network revenue management

    Get PDF
    The Network Revenue Management problem can be formulated as a stochastic dynamic programming problem (DP or the\optimal" solution V *) whose exact solution is computationally intractable. Consequently, a number of heuristics have been proposed in the literature, the most popular of which are the deterministic linear programming (DLP) model, and a simulation based method, the randomized linear programming (RLP) model. Both methods give upper bounds on the optimal solution value (DLP and PHLP respectively). These bounds are used to provide control values that can be used in practice to make accept/deny decisions for booking requests. Recently Adelman [1] and Topaloglu [18] have proposed alternate upper bounds, the affine relaxation (AR) bound and the Lagrangian relaxation (LR) bound respectively, and showed that their bounds are tighter than the DLP bound. Tight bounds are of great interest as it appears from empirical studies and practical experience that models that give tighter bounds also lead to better controls (better in the sense that they lead to more revenue). In this paper we give tightened versions of three bounds, calling themsAR (strong Affine Relaxation), sLR (strong Lagrangian Relaxation) and sPHLP (strong Perfect Hindsight LP), and show relations between them. Speciffically, we show that the sPHLP bound is tighter than sLR bound and sAR bound is tighter than the LR bound. The techniques for deriving the sLR and sPHLP bounds can potentially be applied to other instances of weakly-coupled dynamic programming.revenue management, bid-prices, relaxations, bounds

    The customer valuations game as a basis for revenue management

    Get PDF
    I describe the customer valuations game, a simple intuitive game that can serve as a foundation for teaching revenue management. The game requires little or no preparation, props or software, takes around two hours (and hence can be finished in one session), and illustrates the formation of classical (airline and hotel) revenue management mechanisms such as advanced purchase discounts, booking limits and fixed multiple prices. I normally use the game as a base to introduce RM and to develop RM forecasting and optimization concepts off it. The game is particularly suited for non-technical audiences.Revenue management, teaching, valuations

    A finite-population revenue management model and a risk-ratio procedure for the joint estimation of population size and parameters

    Get PDF
    Many dynamic revenue management models divide the sale period into a finite number of periods T and assume, invoking a fine-enough grid of time, that each period sees at most one booking request. These Poisson-type assumptions restrict the variability of the demand in the model, but researchers and practitioners were willing to overlook this for the benefit of tractability of the models. In this paper, we criticize this model from another angle. Estimating the discrete finite-period model poses problems of indeterminacy and non-robustness: Arbitrarily fixing T leads to arbitrary control values and on the other hand estimating T from data adds an additional layer of indeterminacy. To counter this, we first propose an alternate finite-population model that avoids this problem of fixing T and allows a wider range of demand distributions, while retaining the useful marginal-value properties of the finite-period model. The finite-population model still requires jointly estimating market size and the parameters of the customer purchase model without observing no-purchases. Estimation of market-size when no-purchases are unobservable has rarely been attempted in the marketing or revenue management literature. Indeed, we point out that it is akin to the classical statistical problem of estimating the parameters of a binomial distribution with unknown population size and success probability, and hence likely to be challenging. However, when the purchase probabilities are given by a functional form such as a multinomial-logit model, we propose an estimation heuristic that exploits the specification of the functional form, the variety of the offer sets in a typical RM setting, and qualitative knowledge of arrival rates. Finally we perform simulations to show that the estimator is very promising in obtaining unbiased estimates of population size and the model parameters.Revenue management, estimation, multi-nomial logit, risk-ratio

    A randomized concave programming method for choice network revenue management

    Get PDF
    Models incorporating more realistic models of customer behavior, as customers choosing from an offer set, have recently become popular in assortment optimization and revenue management. The dynamic program for these models is intractable and approximated by a deterministic linear program called the CDLP which has an exponential number of columns. However, when the segment consideration sets overlap, the CDLP is difficult to solve. Column generation has been proposed but finding an entering column has been shown to be NP-hard. In this paper we propose a new approach called SDCP to solving CDLP based on segments and their consideration sets. SDCP is a relaxation of CDLP and hence forms a looser upper bound on the dynamic program but coincides with CDLP for the case of non-overlapping segments. If the number of elements in a consideration set for a segment is not very large (SDCP) can be applied to any discrete-choice model of consumer behavior. We tighten the SDCP bound by (i) simulations, called the randomized concave programming (RCP) method, and (ii) by adding cuts to a recent compact formulation of the problem for a latent multinomial-choice model of demand (SBLP+). This latter approach turns out to be very effective, essentially obtaining CDLP value, and excellent revenue performance in simulations, even for overlapping segments. By formulating the problem as a separation problem, we give insight into why CDLP is easy for the MNL with non-overlapping considerations sets and why generalizations of MNL pose difficulties. We perform numerical simulations to determine the revenue performance of all the methods on reference data sets in the literature.assortment optimization, randomized algorithms, network revenue management.

    An enhanced concave program relaxation for choice network revenue management

    Get PDF
    The network choice revenue management problem models customers as choosing from an offer set, and the firm decides the best subset to offer at any given moment to maximize expected revenue. The resulting dynamic program for the firm is intractable and approximated by a deterministic linear program called the CDLP which has an exponential number of columns. However, under the choice-set paradigm when the segment consideration sets overlap, the CDLP is difficult to solve. Column generation has been proposed but finding an entering column has been shown to be NP-hard. In this paper, starting with a concave program formulation called SDCP that is based on segment-level consideration sets, we add a class of constraints called product constraints (σPC), that project onto subsets of intersections. In addition we propose a natural direct tightening of the SDCP called ESDCPκ, and compare the performance of both methods on the benchmark data sets in the literature. In our computational testing on the benchmark data sets in the literature, 2PC achieves the CDLP value at a fraction of the CPU time taken by column generation. For a large network our 2PC procedure runs under 70 seconds to come within 0.02% of the CDLP value, while column generation takes around 1 hour; for an even larger network with 68 legs, column generation does not converge even in 10 hours for most of the scenarios while 2PC runs under 9 minutes. Thus we believe our approach is very promising for quickly approximating CDLP when segment consideration sets overlap and the consideration sets themselves are relatively small

    Dynamic price competition with fixed capacities

    Get PDF
    Many revenue management (RM) industries are characterized by (a) fixed capacities in the short term (e.g., hotel rooms, seats on an airline flight), (b) homogeneous products (e.g., two airline flights between the same cities at similar times), and (c) customer purchasing decisions largely influenced by price. Competition in these industries is also very high even with just two or three direct competitors in a market. However, RM competition is not well understood and practically all known implementations of RM software and most published models of RM do not explicitly model competition. For this reason, there has been considerable recent interest and research activity to understand RM competition. In this paper we study price competition for an oligopoly in a dynamic setting, where each of the sellers has a fixed number of units available for sale over a fixed number of periods. Demand is stochastic, and depending on how it evolves, sellers may change their prices at any time. This reflects the fact that firms constantly, and almost costlessly, change their prices (alternately, allocations at a price in quantity-based RM), reacting either to updates in their estimates of market demand, competitor prices, or inventory levels. We first prove existence of a unique subgame-perfect equilibrium for a duopoly. In equilibrium, in each state sellers engage in Bertrand competition, so that the seller with the lowest reservation value ends up selling a unit at a price that is equal to the equilibrium reservation value of the competitor. This structure hence extends the marginal-value concept of bid-price control, used in many RM implementations, to a competitive model. In addition, we show that the seller with the lowest capacity sells all its units first. Furthermore, we extend the results transparently to n firms and perform a number of numerical comparative statics exploiting the uniqueness of the subgame-perfect equilibrium.revenue management, bid-prices, subgame-perfect equilibrium.

    Network revenue management with product-specific no-shows

    Get PDF
    Revenue management practices often include overbooking capacity to account for customers who make reservations but do not show up. In this paper, we consider the network revenue management problem with no-shows and overbooking, where the show-up probabilities are specific to each product. No-show rates differ significantly by product (for instance, each itinerary and fare combination for an airline) as sale restrictions and the demand characteristics vary by product. However, models that consider no-show rates by each individual product are difficult to handle as the state-space in dynamic programming formulations (or the variable space in approximations) increases significantly. In this paper, we propose a randomized linear program to jointly make the capacity control and overbooking decisions with product-specific no-shows. We establish that our formulation gives an upper bound on the optimal expected total profit and our upper bound is tighter than a deterministic linear programming upper bound that appears in the existing literature. Furthermore, we show that our upper bound is asymptotically tight in a regime where the leg capacities and the expected demand is scaled linearly with the same rate. We also describe how the randomized linear program can be used to obtain a bid price control policy. Computational experiments indicate that our approach is quite fast, able to scale to industrial problems and can provide significant improvements over standard benchmarks.Network revenue management, linear programming, simulation, overbooking, no-shows.
    • …
    corecore