228 research outputs found

    Contains and Inside relationships within combinatorial Pyramids

    Full text link
    Irregular pyramids are made of a stack of successively reduced graphs embedded in the plane. Such pyramids are used within the segmentation framework to encode a hierarchy of partitions. The different graph models used within the irregular pyramid framework encode different types of relationships between regions. This paper compares different graph models used within the irregular pyramid framework according to a set of relationships between regions. We also define a new algorithm based on a pyramid of combinatorial maps which allows to determine if one region contains the other using only local calculus.Comment: 35 page

    Integration of SAR and DEM data: Geometrical considerations

    Get PDF
    General principles for integrating data from different sources are derived from the experience of registration of SAR images with digital elevation models (DEM) data. The integration consists of establishing geometrical relations between the data sets that allow us to accumulate information from both data sets for any given object point (e.g., elevation, slope, backscatter of ground cover, etc.). Since the geometries of the two data are completely different they cannot be compared on a pixel by pixel basis. The presented approach detects instances of higher level features in both data sets independently and performs the matching at the high level. Besides the efficiency of this general strategy it further allows the integration of additional knowledge sources: world knowledge and sensor characteristics are also useful sources of information. The SAR features layover and shadow can be detected easily in SAR images. An analytical method to find such regions also in a DEM needs in addition the parameters of the flight path of the SAR sensor and the range projection model. The generation of the SAR layover and shadow maps is summarized and new extensions to this method are proposed

    Invariant Representative Cocycles of Cohomology Generators using Irregular Graph Pyramids

    Get PDF
    Structural pattern recognition describes and classifies data based on the relationships of features and parts. Topological invariants, like the Euler number, characterize the structure of objects of any dimension. Cohomology can provide more refined algebraic invariants to a topological space than does homology. It assigns `quantities' to the chains used in homology to characterize holes of any dimension. Graph pyramids can be used to describe subdivisions of the same object at multiple levels of detail. This paper presents cohomology in the context of structural pattern recognition and introduces an algorithm to efficiently compute representative cocycles (the basic elements of cohomology) in 2D using a graph pyramid. An extension to obtain scanning and rotation invariant cocycles is given.Comment: Special issue on Graph-Based Representations in Computer Visio

    Open Issues and Chances for Topological Pyramids

    Get PDF
    High resolution image data require a huge amount of computational resources. Image pyramids have shown high performance and flexibility to reduce the amount of data while preserving the most relevant pieces of information, and still allowing fast access to those data that have been considered less important before. They are able to preserve an existing topological structure (Euler number, homology generators) when the spatial partitioning of the data is known at the time of construction. In order to focus on the topological aspects let us call this class of pyramids “topological pyramids”. We consider here four open problems, under the topological pyramids context: The minimality problem of volumes representation, the “contact”-relation representation, the orientation of gravity and time dimensions and the integration of different modalities as different topologies.Austrian Science Fund P20134-N13Junta de Andalucía FQM–296Junta de Andalucía PO6-TIC-0226

    Irregular graph pyramids and representative cocycles of cohomology generators

    Get PDF
    Structural pattern recognition describes and classifies data based on the relationships of features and parts. Topological invariants, like the Euler number, characterize the structure of objects of any dimension. Cohomology can provide more refined algebraic invariants to a topological space than does homology. It assigns ‘quantities’ to the chains used in homology to characterize holes of any dimension. Graph pyramids can be used to describe subdivisions of the same object at multiple levels of detail. This paper presents cohomology in the context of structural pattern recognition and introduces an algorithm to efficiently compute representative cocycles (the basic elements of cohomology) in 2D using a graph pyramid. Extension to nD and application in the context of pattern recognition are discussed

    Image = Structure + Few Colors

    Get PDF
    Topology plays an important role in computer vision by capturing the structure of the objects. Nevertheless, its potential applications have not been sufficiently developed yet. In this paper, we combine the topological properties of an image with hierarchical approaches to build a topology preserving irregular image pyramid (TIIP). The TIIP algorithm uses combinatorial maps as data structure which implicitly capture the structure of the image in terms of the critical points. Thus, we can achieve a compact representation of an image, preserving the structure and topology of its critical points (maxima, the minima and the saddles). The parallel algorithmic complexity of building the pyramid is O(log d) where d is the diameter of the largest object.We achieve promising results for image reconstruction using only a few color values and the structure of the image, although preserving fine details including the texture of the image

    LBP and irregular graph pyramids

    Get PDF
    In this paper, a new codification of Local Binary Patterns (LBP) is given using graph pyramids. The LBP code characterizes the topological category (local max, min, slope, saddle) of the gray level landscape around the center region. Given a 2D grayscale image I, our goal is to obtain a simplified image which can be seen as “minimal” representation in terms of topological characterization of I. For this, a method is developed based on merging regions and Minimum Contrast Algorithm

    Cubical Cohomology Ring of 3D Photographs

    Get PDF
    Cohomology and cohomology ring of three-dimensional (3D) objects are topological invariants that characterize holes and their relations. Cohomology ring has been traditionally computed on simplicial complexes. Nevertheless, cubical complexes deal directly with the voxels in 3D images, no additional triangulation is necessary, facilitating efficient algorithms for the computation of topological invariants in the image context. In this paper, we present formulas to directly compute the cohomology ring of 3D cubical complexes without making use of any additional triangulation. Starting from a cubical complex QQ that represents a 3D binary-valued digital picture whose foreground has one connected component, we compute first the cohomological information on the boundary of the object, Q\partial Q by an incremental technique; then, using a face reduction algorithm, we compute it on the whole object; finally, applying the mentioned formulas, the cohomology ring is computed from such information
    corecore