31 research outputs found

    Circulant preconditioners for solving differential equations with multidelays

    Get PDF
    AbstractWe consider the solution of differential equations with multidelays by using boundary value methods (BVMs). These methods require the solution of some nonsymmetric, large and sparse linear systems. The GMRES method with the Strang-type block-circulant preconditioner is proposed to solve these linear systems. If an Ak1,k2-stable BVM is used, we show that our preconditioner is invertible and the spectrum of the preconditioned matrix is clustered. It follows that when the GMRES method is applied to solving the preconditioned systems, the method would converge fast. Numerical results are given to show the effectiveness of our methods

    A Hessenberg-type algorithm for computing PageRank Problems

    Get PDF
    PageRank is a widespread model for analysing the relative relevance of nodes within large graphs arising in several applications. In the current paper, we present a cost-effective Hessenberg-type method built upon the Hessenberg process for the solution of difficult PageRank problems. The new method is very competitive with other popular algorithms in this field, such as Arnoldi-type methods, especially when the damping factor is close to 1 and the dimension of the search subspace is large. The convergence and the complexity of the proposed algorithm are investigated. Numerical experiments are reported to show the efficiency of the new solver for practical PageRank computations

    DRIPPING AND JETTING IN COFLOWING LIQUID STREAMS

    Full text link

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Phase-field simulations of two-phase flows

    No full text
    In this thesis, I study a number of issues related to two-phase fluid flows and spike simulations of a biological model. In the first part of the thesis, I simulate the moving contact line in two-dimensional chemically patterned channels using a diffuse-interface model with the generalized Navier boundary condition (GNBC). A remarkable agreement with molecular dynamics (MD) simulations is obtained. Numerical results from continuum simulations are presented for the relaxational dynamics of fluid-fluid interface and an interesting phenomenon of interface breaking was observed for high wettability contrast. In the second part of the thesis, I study the dynamics of dripping-to-jetting transition for two immiscible coflowing liquid streams numerically. Two different classes of transition are identified. In both cases, nonlinear dynamical phenomena such as period doubling and chaos are observed between simple dripping and jetting. Extensive numerical calculations show that the first class of dripping-to-jetting transition is determined by the Weber number of the inner fluid Win, and the second class of dripping-to-jetting transition is controlled by capillary number of the outer fluid Cout. In the last part of the thesis, an adaptive numerical method is proposed to solve the Gierer-Meinhardt (GM) system on irregular domain. The method works for domains defined by level sets of implicit functions and the generated mesh is of high quality. The method is shown to be effective by comparing with asymptotic result. Boundary spike solutions of the GM system are obtained and studied numerically, including stability of boundary spike and spike motion along the boundary
    corecore