4,701 research outputs found

    Generalized scaling in fully developed turbulence

    Full text link
    In this paper we report numerical and experimental results on the scaling properties of the velocity turbulent fields in several flows. The limits of a new form of scaling, named Extended Self Similarity(ESS), are discussed. We show that, when a mean shear is absent, the self scaling exponents are universal and they do not depend on the specific flow (3D homogeneous turbulence, thermal convection , MHD). In contrast, ESS is not observed when a strong shear is present. We propose a generalized version of self scaling which extends down to the smallest resolvable scales even in cases where ESS is not present. This new scaling is checked in several laboratory and numerical experiment. A possible theoretical interpretation is also proposed. A synthetic turbulent signal having most of the properties of a real one has been generated.Comment: 25 pages, plain Latex, figures are available upon request to the authors ([email protected], [email protected]

    On the intermittent energy transfer at viscous scales in turbulent flows

    Full text link
    In this letter we present numerical and experimental results on the scaling properties of velocity turbulent fields in the range of scales where viscous effects are acting. A generalized version of Extended Self Similarity capable of describing scaling laws of the velocity structure functions down to the smallest resolvable scales is introduced. Our findings suggest the absence of any sharp viscous cutoff in the intermittent transfer of energy.Comment: 10 pages, plain Latex, 6 figures available upon request to [email protected]

    Intermittency in Turbulence: computing the scaling exponents in shell models

    Get PDF
    We discuss a stochastic closure for the equation of motion satisfied by multi-scale correlation functions in the framework of shell models of turbulence. We give a systematic procedure to calculate the anomalous scaling exponents of structure functions by using the exact constraints imposed by the equation of motion. We present an explicit calculation for fifth order scaling exponent at varying the free parameter entering in the non-linear term of the model. The same method applied to the case of shell models for Kraichnan passive scalar provides a connection between the concept of zero-modes and time-dependent cascade processes.Comment: 12 pages, 5 eps figure

    A lattice Boltzmann study of non-hydrodynamic effects in shell models of turbulence

    Get PDF
    A lattice Boltzmann scheme simulating the dynamics of shell models of turbulence is developed. The influence of high order kinetic modes (ghosts) on the dissipative properties of turbulence dynamics is studied. It is analytically found that when ghost fields relax on the same time scale as the hydrodynamic ones, their major effect is a net enhancement of the fluid viscosity. The bare fluid viscosity is recovered by letting ghost fields evolve on a much longer time scale. Analytical results are borne out by high-resolution numerical simulations. These simulations indicate that the hydrodynamic manifold is very robust towards large fluctuations of non hydrodynamic fields.Comment: 17 pages, 3 figures, submitted to Physica

    Stochastic Resonance in Two Dimensional Landau Ginzburg Equation

    Full text link
    We study the mechanism of stochastic resonance in a two dimensional Landau Ginzburg equation perturbed by a white noise. We shortly review how to renormalize the equation in order to avoid ultraviolet divergences. Next we show that the renormalization amplifies the effect of the small periodic perturbation in the system. We finally argue that stochastic resonance can be used to highlight the effect of renormalization in spatially extended system with a bistable equilibria

    Emergence of the stochastic resonance in glow discharge plasma

    Full text link
    stochastic resonance, glow discharge plasma, excitable medium, absolute mean differenceComment: St

    Selective advantage of diffusing faster

    Get PDF
    We study a stochastic spatial model of biological competition in which two species have the same birth and death rates, but different diffusion constants. In the absence of this difference, the model can be considered as an off-lattice version of the Voter model and presents similar coarsening properties. We show that even a relative difference in diffusivity on the order of a few percent may lead to a strong bias in the coarsening process favoring the more agile species. We theoretically quantify this selective advantage and present analytical formulas for the average growth of the fastest species and its fixation probability.Comment: 8 pages, 5 figures (Main Text + Supplementary Information). Accepted versio

    On the limiting behavior of parameter-dependent network centrality measures

    Get PDF
    We consider a broad class of walk-based, parameterized node centrality measures for network analysis. These measures are expressed in terms of functions of the adjacency matrix and generalize various well-known centrality indices, including Katz and subgraph centrality. We show that the parameter can be "tuned" to interpolate between degree and eigenvector centrality, which appear as limiting cases. Our analysis helps explain certain correlations often observed between the rankings obtained using different centrality measures, and provides some guidance for the tuning of parameters. We also highlight the roles played by the spectral gap of the adjacency matrix and by the number of triangles in the network. Our analysis covers both undirected and directed networks, including weighted ones. A brief discussion of PageRank is also given.Comment: First 22 pages are the paper, pages 22-38 are the supplementary material
    • …
    corecore