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A b s t r a c t - - W e  consider the solution of differential equations with multidelays by using boundary 
value methods (BVMs). These methods require the solution of some nonsymmetric, large and sparse 
linear systems. The GMRES method with the Strang-type block-cireulant preconditioner is proposed 
to solve these linear systems. If an Akl,kj-stable BVM is used, we show that our preconditioner is 
invertible and the spectrum of the preconditioned matrix is clustered. It follows that when the 
GMRES method is applied to solving the preconditioned systems, the method would converge fast. 
Numerical results are given to show the effectiveness of our methods. @ 2004 Elsevier Ltd. All 
rights reserved. 

K e y w o r d s - - D i f f e r e n t i a l  equation with multidelays, BVM, Block-circulant preconditioner, GM- 
RES method. 

1. I N T R O D U C T I O N  

In this paper,  we consider the solution of a differential equation with multidelays 

y ' ( t )  = J n y ( t )  ÷ D(~l)y(t - T1) + " '  ÷ D(S)y ( t  - ~-s) + f( t) ,  t > to, 

y( t)  = ~b(t), t _< to, 
(1) 

by boundary  value methods  (BVMs), where y(t) ,  f(t) ~b(t) : R Rn; • ,  n(1) ., D(n s) - - -+  ~ n  ,', C 

R ~xn, and ~-1,... ,% > 0 are some rational numbers.  Such kind of equation appears  in many  
applications [1,2]. The BVMs tha t  we used are relatively new numerical methods  for solving 
ordinary differential equations (ODEs), which is based on the linear mult is tep formulae, see 
[1]. The advantage in using BVMs over classical initial value methods (IVMs) comes from the 
stabili ty properties of BVMs although IVMs, where the system of equations can be solved easily 
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by forward recursions, are more efficient than BVMs, see for instance [1]. By applying a BVM, 
the discrete solution of (1) is given by the solution of a linear system M y  = b. 

Recently, Bertaccini in [3] proposed to use BVMs with Krylov subspace methods [4] to solve 
initial value problems (IVPs) of ODEs. In order to speed up the convergence rate of Krylov sub- 
space methods, he proposed two cireulant preconditioners. The use of eireulant preeonditioners 
for solving structured linear systems has been studied extensively since 1986, see [5,6]. In [7], 
Chan, Ng and Jin proposed a new preconditioner called the Strang-type block-eirculant precon- 
ditioner for solving linear systems from IVPs. The Strang-type preeonditioner was also used to 
solve linear systems from differential-algebraic equations and delay differential equations, see [8,9]. 
In this paper, we will use the Strang-type preconditioner for solving differential equations with 
multidelays. 

The paper is organized as follows. In Section 2, we recall BVMs and propose the Strang-type 
block-circulant preconditioner. We introduce the stability properties of BVMs and discuss the 
invertibility of the Strang-type preconditioner in Section 3. The spectral analysis of our method 
is given in Section 4 and numerical examples are given in Section 5. 

2. B V M S  A N D  S T R A N G - T Y P E  P R E C O N D I T I O N E R  

In order to find a reasonable numerical solution for differential equation (1) with multidelays, 
we require that  the solution of (1) is asymptotically stable. We have the following lemma, see [10]. 

LEMMA 1. For  a n y  s > 1, ifT](Jn) ~ (1/2)/~max(Jn ~- Jn  T) < 0 and  

s 

~(J~) + ~ D(~5) 2 < 0, (2) 
j = l  

then the  solut ion o f  (1) is asympto t ica l ly  stable. 

In the following, for simplicity, we only consider the case of s = 2 in (1). The generalization 
to arbitrary integer s > 2 is straightforward. Let 

h_'rl _ T2 
?T~ I ?T~ 2 

be the step size where m 1 and m2 are positive integers with m2 > mi  (~-2 > T1 > 0). By using a 
BVM with (kl, k2)-boundary conditions, we have 

k k 

E a { Y P + i - k l  : h E / ~ {  JnYp+i-ka ÷ n J p + i - ~ l - m l  + n Jp+i -  l-m2 
i : 0  i : 0  

(3) 

for p = k l , . . . ,  N - 1 ,  where k = kl-I-k2, and {ai}, {fli} are coefficients of the given BVM, see [1]. 
By providing the values 

Y-m2, • - •, Y-m~, -. • ,Y0, Yl,. • -, Yk~-l, YN,. - •, YN+k2-1, (4) 

equation (3) can be written in a matrix form as 

M y = b ,  (5) 

where 
M =- A ® In - h B  ® J~ - hC  (1) @ D(~ 1) - h C  (2) ® D(~ 2) (6) 

with In 6 ]R n×n being the identity matrix, J~ being the matrix from (1), and "@" being the 
Kronecker product. The vector y in (5) is defined by 

yT (Yk~, T T Rn(N-kl) 
= Y k l + I , ' ' ' , Y N - 1 )  E • 
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The right-hand side b E R n (N-k l )  of (5) depends on f, the boundary values and the coefficients 
of the method. The A, B, C 0 )  and C (2) in (6) are Toeplitz matrices in R (y-kl)x(N-k~) and 
defined as follows, 

o~o . . .  , ~ ,  ,~o . . .  , ~ ,  

" 0  0 

& & 

: 

rio 

C (1) = 
fl0 

".•  " . .  

• . .  flk 

flo . . .  flk O 

C (2) = 

see [1]. We remark that  the first column of C (1) is given by 

and the first column of C (2) is given by 

• ,9o, / 
N - m 2 - 2 k l - 1 ]  

• .• • . •  

. . ,  flk •'" 
" . .  " • .  

~ 0  • - -  

T 

T 

¢~k O 

The Strang-type block-circulant preconditioner for (6) is defined as follows: 

S 

where s ( E )  is Strang's eirculant preeonditioner of matrix E,  for E = A, B, C (1), and C (2). 
More precisely, for any given Toeplitz matrix Tz -- [t~-j]~,j= 1 = [tq], Strang's cireulant preeondi- 
tioner s(Tt)  is a cireulant matrix with diagonals given by 

tq, 0 ~ q ~ Lz/2J, 

[ s ( r s J q  = tq_~, [g/2J < q < z, 

[s(T~)]~+q, 0 < - q  < l, 

see [5,6]. 

3 .  S T A B I L I T Y  A N D  I N V E R T I B I L I T Y  

In order to study the invertibility of S, we need to introduce some stability properties of the 
BVM. We first introduce the characteristic polynomials p(z)  and or(z) of the BVM which are 
defined by 

k k 
p(z) - ~ /  and ~(z) _= ~ j z , ,  (s) 

j=o j=o 
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where {a~}, {fl~} are given by (3). The Akl,k~-stability polynomial  is defined by 

~(z ,  q) = p(z)  - q~(z ) ,  (9) 

where z, q e C. Let C -  - {q E C : Re(q) < 0} where Re(.) denotes the real par t  of a complex 
number.  

DEFINITION 1. (See [2].) The region 

7)kl,k2 = {q • C :  ~r(z, q) has kl zeros inside Izl : 1 and k2 zeros outside Izl = 1} 

is called the region of Akl,k2-stability of a given B V M  with (kl ,  k2)-boundary conditions. More- 
over, the B V M  is said to be Akl,k2-stable i f  C -  C 7)k,,k2. 

Consider now the equation ~r(z, q) = 0. It  defines a mapping  between the complex z-plane and 
the complex q-plane. For every z E C which is a root Of ~(z, q), (9) provides q -- q(z) = p ( z ) /¢ ( z ) .  
Let 

F -~ q E C. : q - -~ (e~O) , 0<__0<27r . (10) 

The  I" is the set corresponding to the roots on the unit circumference and is called the boundary  
locus. We have the following lemma, see [1]. 

LEMMA 2. I r a  B V M  is Ak~,k,-stable and F is defined by (10), then Re(q) >_ O, for all q • F. 

Now, we discuss the invertibility of the Strang-type preconditioner S defined by (7). Since any 
circulant mat r ix  can be diagonalized by the Fourier matr ix  F ,  see [5,6], we have 

s(E)  = F*AEF,  

where s(E)  is Strang's  circulant preconditioner of Toeplitz matr ix  E and AE is the diagonal 
matr ix  holding the eigenvaiues of s(E),  for E = A, B, C (1), and C (2), respectively. Therefore, 
we obtain 

S = (F* ® I~) (AA ® In - hAB ® J~ - hAG(1) ® D(~ l) - hAt(2) ® D (2)) (F  ® Is) .  (11) 

Note tha t  the j th-block of 

AA ® In - hAB ® J~ - hAc(~) ® D (1) - hAG(2) ® D (2) 

is given by 
Sj = [AA]jjIn -- h[AB]jjJn - h [Av(1)]/j D (1) - h [Ac(2)]y j D( :  ), 

for j -= 1, 2 , . . . ,  N - kl. Therefore, we need to prove tha t  

Sj : [AA]jjln -- h[AB]jjJn - h [Ac(~)]j j D (1) - h [Ac(2)]jj D(n 2), 

are invertible, for j --- 1 , 2 , . . .  , N  - kl. Let wj = e 2~ij/N-k~, where i ~ v/-Z~. We have 

P(~J) [A . ] .  - °(~J) 
[ * A .  - , 

wj 2 

[Ac(~]jj = ¢~k~  ~ - k ~ + k  + ' "  + powj w~l+k~,  

and 

[ac~2~]z = ~ 9  ~-k~+~ + ' "  + ~ o ~ 9  ~-k~ - ~7~+~., 

where p(z) and ~r(z) are defined as in (s), see [7]. Therefore, 

1 

We then have the following theorem. 
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THEOREM 1. If the BVM with (k l .  , k2)-boundary conditions is Ak,,k,-stable and (2) holds, then 
for arb/trary 0 C R, the matrix 

ei'~ ° (p(eiO) I _h~(eiO)or _he-i'~O~(e~O)D(1)) -ha(e~°)V(~ 2) 

is invertible. It follows that the Strang-type preeonditioner S, deigned by (7), is also invertible. 

PROOF. Suppose that there exist x E C ~ with Itxll~ = 1 and 0 E R, such that 

Then, 

i.e., 

X* [D (eiO) In -- ho" (e iO) ~n - he-iml° o" (e iO) D(n 1) - he -ira200" (e i0) D(~ 2)] x = 0, 

p (e ~°) - hx* g~xcr (e ie) - he-i'~l°x * D(1)x~ (e i°) - he-i'~2°x * D(2)xa (e ~e) = 0. 

We, therefore, have 

p(e  ~°) - (hx*J~x + he-i~i°x*D~l)x + h e - ~ ° x * D ~ ) x ) ~ < )  

where 7r(z, q) is given by (9). Thus, 

where F is the boundary locus defined by (10). Since the BVM is Ak~,k~-stable, from Lemma 2, 
we know that 

Re (x*J~x + e-im~°x*D(~l)x + e-i'~2°x*D(~2)x) >_0. 

By Cauchy-Schwarz inequality, we have 

Re (e-im*Ox*D(~l)x) <_ x*D(~l)x < Ilxl12 D(~ l>x 2 -< D(~I) 2 Ilxll2 = D(~ 1) 2' 

similarly, Re(e-im~°x*Dg)x) <_ IlD(~2)ll2, and 

rl(or~) = max Re (x*J~x) _> Re(x*J~x) .  
Ilxl12-t 

Thus, we have 

v ( & )  + 13 2 + D( 23 2 -> 0, 

which is a contradiction to (2). Therefore, the matrix 

ei'~2 e (p(e~O) I _ha(eiO)J -he-i'~l°a(ei°)D(1)) - h a ( e i ° ) D  (2) 

is invertible and it follows by (11) that the Strang-type preconditioner S is also invertible. 
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4. S P E C T R A L  A N A L Y S I S  

In this section, we discuss the convergence rate of preconditioned Krylov subspace methods 
with the Strang-type block-circulant preconditioner. It is well known that the convergence rate of 
Krylov subspace methods is closely related to the spectrum of the preconditioned matrix S -1 M.  
By noting that 

S - 1 M  = I + S - I ( M  - S) ,  

one can easily prove the following result for the spectrum of preconditioned matrix. We, therefore, 
omit its proof. 

THEOREM 2. Let M be given by (6) and S be given by (7). Then, we have 

S - 1 M  = I~(N-kl) + L, 

where In(N-kl) E R n(lv-kl)x~(N-k~) is the identity matrix and L is a low rank matrix with 

rank(L) <: (2k + ml + m2 + 2kl ÷ 2)n. 

Now, we discuss the convergence property of Krylov subspace methods for solving the precon- 
ditioned system S - 1 M y  = S - l b .  We note that in [6], the following lemma was proved. 

LEMMA 3. Let A = I +  L where I is the identity matrix. I f  Krylov subspace methods are applied 
to solving the linear system A x  = b, then the methods will converge in at most rank(L) + 1 
iterations in exact arithmetic. 

By combining Theorem 2 and Lemma 3, we have the following corollary. 

COROLLARY 1. When Krylov subspace methods are applied to solving the preconditioned system 

S - 1 M y  = S - l b ,  

the methods will converge in at most 

(2k + ml + m2 -{- 2kl + 2)n + 1 = O(n) 

iterations in exact arithmetic. 

We observe from Corollary 1 that if the step size h = "rl/ml = T2/m2 is fixed, the number 
of iterations for convergence of Krylov subspace methods, when applied to solving the precondi- 
tioned system S - 1 M y  = S - l b ,  will be independent of N, and therefore, is independent of the 
length of the interval that we considered. We should emphasize that numerical examples in the 
next section show a much faster convergence rate than that predicted by the estimate provided 
by Corollary 1. 

5. N U M E R I C A L  TESTS 

In this section, we illustrate the efficiency of our preconditioner by solving the following prob- 
lems. All the experiments were performed in MATLAB 6.1. We used the IVIATLAB-provided M-file 
"gmres" to solve the preconditioned systems. In our tests, the zero vector is the initial guess and 
the stopping criterion is 

IlrqlL__   < lo_6  
llroll2 

where rq is the residual after the qth iteration. 

EXAMPLE 1. Consider 

y'(t)  = J , y ( t )  + DO)y(t - 0.5) + D(2)y(t - 1), t >_ 0, 

y(t) = (sint, 1 , . . . , 1 )  T, t ~ 0, 
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where 

and 

EXAMPLE 2. 

I i " . .  • . o  

2 
1 2 - 1 0  

1 
D~) = - 

' n 

Consider 

: 1 

~ )  = 1 -. . 
i • 

n " . .  ' . •  

1 

21 ] 
- - 1  " .  ' •  

• . " .  m 1 

- 1  2 

y'( t )  = Jny(t)  + D(1)y(t - 0.5) + D(2)y(t - 1), 

y(t)  = (1 ,1 , . . . , 1 )  T, 

t_>0, 

t_<0, 

where 

= 831 ] I: ] o . . . - - 1  

3 ' .  " •  " -  . .  . .  

1 " .  "'. " .  1 and D(~ 1) = D (2) = " ' . 
.. .. .. ". ". --1 

• " ' 1 

1 3 

Example 1 is solved by using the third-order generalized backward differentiation formulae 
(GBDF) and Example 2 is solved by using the fifth-order generalized Adams method (GAM) 

for t E [0, 4]. In practice, we do not have the boundary values Yl, . .  •, Ykl-1 and YN, . . . ,  YN+k2-1 
provided in (4). Instead of giving the above values, kl - 1 initial additional equations and k2 final 
additional equations are given• The equations of the GAM and the GBDF with the correspond- 
ing additional equations can be found in [1]. We remark that  after introducing the additional 
equations, the matrices A, B, C(1), and C (2) in (6) are Toeplitz matrices with small rank per- 
turbations. By neglecting the small rank perturbations, we can also construct the Strang-type 
preconditioner (7)• 

Table 1 lists the number of iterations required for convergence of the GMRES method with 
different preconditioners. In the table, I m e ansno  preconditioner is used and S denotes the 
Strang-type block-circulant preconditioner defined as in (7). Besides, T and P denote Chan's 
and Bertaccini's block-cireulant preconditioners, respectively. We remark that  for a Toeplitz 
matrix A = [ti-j]~,j=l = [tq], the diagonals of Chan's circulant preconditioner c(A) are defined 
by 

[c(A)]q= 1- -[  tq +-[tq_l, q = O , . . . , l - 1 ,  

see [11]• Thus, Chan's block-cireulant preconditioner for (6) is defined as 

_ ~ ( ~ ) ® , ~ -  ~ ® ~o -  ~ ( ~ )  ® ~:~ ~ (~¢~) ® ~ : ~  

Similarly, the diagonals of Bertaccini's circulant preconditioner p(A) for A l = I t , - j i b , j = 1  = [ tq]  a r e  

defined by 

[p(A)]q= 1 + - /  tq-t--[tq_z, q = O , . . , l - l ,  
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Table 1. Number of iterations for Example i (left) and Example 2 (right). 

12 

24 

48 

m I S T 

10 50 9 9 

20 93 12 13 

40 177 16 18 

80 349 22 23 

10 52 9 11 

20 97 11 12 

40 185 15 16 

80 367 19 22 

10 53 12 13 

20 98 14 15 

40 189 14 16 

80 378 17 19 

9 

13 

18 

24 

12 

13 

17 

23 

13 

16 

17 

20 

r~ 

12 

24 

48 

m I S T 

10 49 8 10 

20 88 8 10 

40 168 7 1O 

80 328 6 10 

10 50 10 12 

20 90 9 12 

40 170 9 12 

80 330 9 12 

10 52 13 14 

20 91 12 14 

40 171 12 15 

80 332 11 15 

P 

11 

11 

11 

11 

15 
15 

15 

15 

20 

20 

20 

20 

see [3], a n d  the re fo re ,  B e r t a c c i n i ' s  b l o c k - c i r c u l a n t  p r e c o n d i t i o n e r  for (6) is de f ined  as 

F r o m  T a b l e  1, we n o t e  t h a t  t h e  n u m b e r  of  i t e r a t i o n s  for conve rgence  w i t h  a b l o c k - c i r c u l a n t  

p r e c o n d i t i o n e r  is m u c h  less t h a n  t h a t  w i t h  n o  p r e c o n d i t i o n e r .  T h e  p e r f o r m a n c e  of  t h e  S t r a n g -  

t y p e  p r e c o n d i t i o n e r  is b e t t e r  t h a n  t h a t  of o t h e r  p r e c o n d i t i o n e r s  in  t h e s e  example s .  
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