11 research outputs found

    Structural modification of the antidepressant mianserin suggests that its anti-inflammatory activity may be independent of 5-Hydroxytryptamine receptors

    Get PDF
    Antidepressants are increasingly recognized to have anti-inflammatory properties in addition to their ability to treat major depressive disorders. To explore if engagement of 5-hydroxytryptamine (5-HT) receptors was required for the anti-inflammatory effect of the tetracyclic antidepressant mianserin, a series of structural derivatives were generated with the aim of reducing 5-HT receptor binding. Primary human peripheral blood mononuclear cells were used to screen for anti-inflammatory activity. The lead compound demonstrated a significant loss in 5-HT receptor binding, as assessed by non-selective 5-HT binding of radiolabelled serotonin in rat cerebral cortex. However, it retained the ability to inhibit endosomal toll-like receptor 8 signaling in primary human macrophages and spontaneous cytokine production from human rheumatoid synovial tissue equivalent to that previously observed for mianserin. These data demonstrate that the anti-inflammatory mechanism of mianserin may be independent of 5-HT receptor activity. This research offers new insights into the mechanism and structural requirements for the anti-inflammatory action of mianserin

    Structural and Functional Analyses of the Second-Generation Integrase Strand Transfer Inhibitor Dolutegravir (S/GSK1349572)S⃞

    No full text
    Raltegravir (RAL) and related HIV-1 integrase (IN) strand transfer inhibitors (INSTIs) efficiently block viral replication in vitro and suppress viremia in patients. These small molecules bind to the IN active site, causing it to disengage from the deoxyadenosine at the 3′ end of viral DNA. The emergence of viral strains that are highly resistant to RAL underscores the pressing need to develop INSTIs with improved resistance profiles. Herein, we show that the candidate second-generation drug dolutegravir (DTG, S/GSK1349572) effectively inhibits a panel of HIV-1 IN variants resistant to first-generation INSTIs. To elucidate the structural basis for the increased potency of DTG against RAL-resistant INs, we determined crystal structures of wild-type and mutant prototype foamy virus intasomes bound to this compound. The overall IN binding mode of DTG is strikingly similar to that of the tricyclic hydroxypyrrole MK-2048. Both second-generation INSTIs occupy almost the same physical space within the IN active site and make contacts with the β4–α2 loop of the catalytic core domain. The extended linker region connecting the metal chelating core and the halobenzyl group of DTG allows it to enter farther into the pocket vacated by the displaced viral DNA base and to make more intimate contacts with viral DNA, compared with those made by RAL and other INSTIs. In addition, our structures suggest that DTG has the ability to subtly readjust its position and conformation in response to structural changes in the active sites of RAL-resistant INs

    RMSE curves of NCAT phantom reconstructions by SART algorithm, TVM algorithm and our algorithm for one typical phase of the NCAT phantom.

    No full text
    <p>The graphs on top row and bottom row present the RMSE curves of the results reconstructed from noise-free projection dataset and noisy projection dataset respectively. The graphs from left to right in each row present the RMSE curves of the results reconstructed from scanning angular ranges [0, 90°] and [0, 120°], respectively.</p

    Glycine transport inhibitors

    No full text
    The present invention relates to compounds of formula (I), or to salts or solvates thereof, their use in the manufacture of medicaments for treating neurological and neuropsychiatric disorders, in particular psychoses, dementia or attention deficit disorder. The invention further comprises processes to make these compounds and pharmaceutical formulations thereof

    Discovery of 1-(3-{2-[4-(2-Methyl-5-quinolinyl)-1-piperazinyl]ethyl}phenyl)-2-imidazolidinone (GSK163090), a Potent, Selective, and Orally Active 5-HT(1A/B/D) Receptor Antagonist.

    No full text
    In an effort to identify selective drug like pan-antagonists of the 5-HT(1) autoreceptors, studies were conducted to elaborate a previously reported dual acting 5-HT(1) antagonist/SSRI structure. A novel series of compounds was identified showing low intrinsic activities and potent affinities across the 5-HT(1A), 5-HT(1B), and 5-HT(1D) receptors as well as high selectivity against the serotonin transporter. From among these compounds, 1-(3-{2-[4-(2-methyl-5-quinolinyl)-1-piperazinyl]ethyl}phenyl)-2-imidazolidinone (36) was found to combine potent in vivo activity with a strong preclinical developability profile, and on this basis it was selected as a drug candidate with the aim of assessing its potential as a fast-onset antidepressant/anxiolytic

    特集第2部 地域医療

    Get PDF
    Constitutive NF-κB signaling promotes survival in multiple myeloma (MM) and other cancers; however, current NF-κB-targeting strategies lack cancer cell specificity. Here, we identify the interaction between the NF-κB-regulated antiapoptotic factor GADD45β and the JNK kinase MKK7 as a therapeutic target in MM. Using a drug-discovery strategy, we developed DTP3, a D-tripeptide, which disrupts the GADD45β/MKK7 complex, kills MM cells effectively, and, importantly, lacks toxicity to normal cells. DTP3 has similar anticancer potency to the clinical standard, bortezomib, but more than 100-fold higher cancer cell specificity in vitro. Notably, DTP3 ablates myeloma xenografts in mice with no apparent side effects at the effective doses. Hence, cancer-selective targeting of the NF-κB pathway is possible and, at least for myeloma patients, promises a profound benefit

    Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases

    No full text
    corecore