399 research outputs found

    Computing Real Roots of Real Polynomials ... and now For Real!

    Full text link
    Very recent work introduces an asymptotically fast subdivision algorithm, denoted ANewDsc, for isolating the real roots of a univariate real polynomial. The method combines Descartes' Rule of Signs to test intervals for the existence of roots, Newton iteration to speed up convergence against clusters of roots, and approximate computation to decrease the required precision. It achieves record bounds on the worst-case complexity for the considered problem, matching the complexity of Pan's method for computing all complex roots and improving upon the complexity of other subdivision methods by several magnitudes. In the article at hand, we report on an implementation of ANewDsc on top of the RS root isolator. RS is a highly efficient realization of the classical Descartes method and currently serves as the default real root solver in Maple. We describe crucial design changes within ANewDsc and RS that led to a high-performance implementation without harming the theoretical complexity of the underlying algorithm. With an excerpt of our extensive collection of benchmarks, available online at http://anewdsc.mpi-inf.mpg.de/, we illustrate that the theoretical gain in performance of ANewDsc over other subdivision methods also transfers into practice. These experiments also show that our new implementation outperforms both RS and mature competitors by magnitudes for notoriously hard instances with clustered roots. For all other instances, we avoid almost any overhead by integrating additional optimizations and heuristics.Comment: Accepted for presentation at the 41st International Symposium on Symbolic and Algebraic Computation (ISSAC), July 19--22, 2016, Waterloo, Ontario, Canad

    Representations of fundamental groups of 3-manifolds into PGL(3,C): Exact computations in low complexity

    Full text link
    In this paper we are interested in computing representations of the fundamental group of a 3-manifold into PSL(3;C) (in particular in PSL(2;C); PSL(3;R) and PU(2; 1)). The representations are obtained by gluing decorated tetrahedra of flags. We list complete computations (giving 0-dimensional or 1-dimensional solution sets) for the first complete hyperbolic non-compact manifolds with finite volume which are obtained gluing less than three tetrahedra with a description of the computer methods used to find them

    Computing Chebyshev knot diagrams

    Get PDF
    A Chebyshev curve C(a,b,c,\phi) has a parametrization of the form x(t)=Ta(t); y(t)=T_b(t) ; z(t)= Tc(t + \phi), where a,b,c are integers, Tn(t) is the Chebyshev polynomial of degree n and \phi \in \RR. When C(a,b,c,\phi) has no double points, it defines a polynomial knot. We determine all possible knots when a, b and c are given.Comment: 8

    The first rational Chebyshev knots

    Get PDF
    A Chebyshev knot C(a,b,c,ϕ){\cal C}(a,b,c,\phi) is a knot which has a parametrization of the form x(t)=Ta(t);y(t)=Tb(t);z(t)=Tc(t+ϕ), x(t)=T_a(t); y(t)=T_b(t) ; z(t)= T_c(t + \phi), where a,b,ca,b,c are integers, Tn(t)T_n(t) is the Chebyshev polynomial of degree nn and ϕR.\phi \in \R. We show that any two-bridge knot is a Chebyshev knot with a=3a=3 and also with a=4a=4. For every a,b,ca,b,c integers (a=3,4a=3, 4 and aa, bb coprime), we describe an algorithm that gives all Chebyshev knots \cC(a,b,c,\phi). We deduce a list of minimal Chebyshev representations of two-bridge knots with small crossing number.Comment: 22p, 27 figures, 3 table

    An algebraic method to check the singularity-free paths for parallel robots

    Get PDF
    Trajectory planning is a critical step while programming the parallel manipulators in a robotic cell. The main problem arises when there exists a singular configuration between the two poses of the end-effectors while discretizing the path with a classical approach. This paper presents an algebraic method to check the feasibility of any given trajectories in the workspace. The solutions of the polynomial equations associated with the tra-jectories are projected in the joint space using Gr{\"o}bner based elimination methods and the remaining equations are expressed in a parametric form where the articular variables are functions of time t unlike any numerical or discretization method. These formal computations allow to write the Jacobian of the manip-ulator as a function of time and to check if its determinant can vanish between two poses. Another benefit of this approach is to use a largest workspace with a more complex shape than a cube, cylinder or sphere. For the Orthoglide, a three degrees of freedom parallel robot, three different trajectories are used to illustrate this method.Comment: Appears in International Design Engineering Technical Conferences & Computers and Information in Engineering Conference , Aug 2015, Boston, United States. 201

    Real roots counting for some robotics problems

    No full text
    We propose two algorithms to compute the number of real roots of zero­dimensional systems, using effective algebraic methods. To compare their behaviour on practical examples, we apply these methods to systems that describe some robotics problems (e.g. direct kinematic problem of parallel manipulators

    Non-singular assembly mode changing trajectories in the workspace for the 3-RPS parallel robot

    Get PDF
    Having non-singular assembly modes changing trajectories for the 3-RPS parallel robot is a well-known feature. The only known solution for defining such trajectory is to encircle a cusp point in the joint space. In this paper, the aspects and the characteristic surfaces are computed for each operation mode to define the uniqueness of the domains. Thus, we can easily see in the workspace that at least three assembly modes can be reached for each operation mode. To validate this property, the mathematical analysis of the determinant of the Jacobian is done. The image of these trajectories in the joint space is depicted with the curves associated with the cusp points

    Cusp Points in the Parameter Space of Degenerate 3-RPR Planar Parallel Manipulators

    Get PDF
    This paper investigates the conditions in the design parameter space for the existence and distribution of the cusp locus for planar parallel manipulators. Cusp points make possible non-singular assembly-mode changing motion, which increases the maximum singularity-free workspace. An accurate algorithm for the determination is proposed amending some imprecisions done by previous existing algorithms. This is combined with methods of Cylindric Algebraic Decomposition, Gr\"obner bases and Discriminant Varieties in order to partition the parameter space into cells with constant number of cusp points. These algorithms will allow us to classify a family of degenerate 3-RPR manipulators.Comment: ASME Journal of Mechanisms and Robotics (2012) 1-1

    Certified Algorithms for proving the structural stability of two dimensional systems possibly with parameters

    Get PDF
    International audienceIn [1], a new method for testing the structural stability of multidimensional systems has been presented. The key idea of this method is to reduce the problem of testing the structural stability to that of deciding if an algebraic set has real points. Following the same idea, we consider in this work the specific case of two-dimensional systems and focus on the practical efficiency aspect. For such systems, the problem of testing the stability is reduced to that of deciding if a bivariate algebraic system with finitely many solutions has real ones. Our first contribution is an algorithm that answers this question while achieving practical efficiency. Our second contribution concerns the stability of two dimensional systems with parameters. More precisely, given a two-dimensional system depending on a set of parameters, we present a new algorithm that computes regions of the parameter space in which the considered system is structurally stable

    Improved algorithm for computing separating linear forms for bivariate systems

    Get PDF
    We address the problem of computing a linear separating form of a system of two bivariate polynomials with integer coefficients, that is a linear combination of the variables that takes different values when evaluated at the distinct solutions of the system. The computation of such linear forms is at the core of most algorithms that solve algebraic systems by computing rational parameterizations of the solutions and this is the bottleneck of these algorithms in terms of worst-case bit complexity. We present for this problem a new algorithm of worst-case bit complexity \sOB(d^7+d^6\tau) where dd and τ\tau denote respectively the maximum degree and bitsize of the input (and where \sO refers to the complexity where polylogarithmic factors are omitted and OBO_B refers to the bit complexity). This algorithm simplifies and decreases by a factor dd the worst-case bit complexity presented for this problem by Bouzidi et al. \cite{bouzidiJSC2014a}. This algorithm also yields, for this problem, a probabilistic Las-Vegas algorithm of expected bit complexity \sOB(d^5+d^4\tau).Comment: ISSAC - 39th International Symposium on Symbolic and Algebraic Computation (2014
    corecore