6,743 research outputs found

    Flux dependent 1.5 MeV self-ion beam induced sputtering from Gold nanostructured thin films

    Full text link
    We discuss four important aspects of 1.5 MeV Au2+ ion-induced flux dependent sputtering from gold nanostrcutures (of an average size 7.6 nm and height 6.9 nm) that are deposited on silicon substrates: (a) Au sputtering yield at the ion flux of 6.3x10^12 ions cm-2 s-1 is found to be 312 atoms/ion which is about five times the sputtering yield reported earlier under identical irradiation conditions at a lower beam flux of 10^9 ions cm-2 s-1, (b) the sputtered yield increases with increasing flux at lower fluence and reduces at higher fluence (1.0x10^15 ions cm-2) for nanostructured thin films while the sputtering yield increases with increasing flux and fluence for thick films (27.5 nm Au deposited on Si) (c) Size distribution of sputtered particles has been found to vary with the incident beam flux showing a bimodal distribution at higher flux and (d) the decay exponent obtained from the size distributions of sputtered particles showed an inverse power law dependence ranging from 1.5 to 2.5 as a function of incident beam flux. The exponent values have been compared with existing theoretical models to understand the underlying mechanism. The role of wafer temperature associated with the beam flux has been invoked for a qualitative understanding of the sputtering results in both the nanostructured thin films and thick films.Comment: 25 pages, 5 figures, 1 table To be Appeared in J. Phys. D: Appl. Phy

    Trap-assisted space charge limited transport in short channel MoS2 transistor

    Full text link
    We present temperature dependent IVI-V measurements of short channel MoS2_2 field effect devices at high source-drain bias. We find that although the IVI-V characteristics are Ohmic at low bias, the conduction becomes space charge limited at high VDSV_{DS} and existence of an exponential distribution of trap states was observed. The temperature independent critical drain-source voltage (VcV_c) was also determined. The density of trap states was quantitatively calculated from VcV_c. The possible origin of exponential trap distribution in these devices is also discussed.Comment: 5 pages, 3 figure

    Classical light vs. nonclassical light: Characterizations and interesting applications

    Full text link
    We briefly review the ideas that have shaped modern optics and have led to various applications of light ranging from spectroscopy to astrophysics, and street lights to quantum communication. The review is primarily focused on the modern applications of classical light and nonclassical light. Specific attention has been given to the applications of squeezed, antibunched, and entangled states of radiation field. Applications of Fock states (especially single photon states) in the field of quantum communication are also discussed.Comment: 32 pages, 3 figures, a review on applications of ligh

    Theory of superconductivity with non-Hermitian and parity-time reversal symmetric cooper pairing symmetry

    Full text link
    Recently developed parity (P) and time-reversal (T) symmetric non-Hermitian systems govern a rich variety of new and characteristically distinct physical properties, which may or may not have a direct analog in their Hermitian counterparts. We study here a non-Hermitian, PT-symmetric superconducting Hamiltonian that possesses real quasiparticle spectrum in the PT-region of the Brillouin zone. Within a single-band mean-field theory, we find that real quasiparticle energies are possible when the superconducting order parameter itself is either Hermitian or anti-Hermitian. Within the corresponding Bardeen-Cooper-Schrieffer (BCS) theory, we find that several properties are characteristically distinct and novel in the non-Hermitian pairing case than its Hermitian counterpart. One of our significant findings is that while a Hermitian superconductor gives a second order phase transition, the non-Hermitian one produces a robust first order phase transition. The corresponding thermodynamic properties, and the Meissner effect are also modified accordingly. Finally, we discuss how such a PT-symmetric pairings can emerge from an anti-symmetric potential, such as the Dzyloshinskii-Moria interaction, but with an external external bath, or complex potential, among others.Comment: 15 pages including appendices (2 columns), (v2): Hermitian pairing solution of the DM interaction is added; and conditions for obtaining non-Hermitian pairings are further delineate

    Identifying potential fast growth firms in the Polish small firm stratum

    Get PDF
    corecore