439 research outputs found
Time to Dropout From College: A Hazard Model with Endogenous Waiting
Using data from the 1979 National Longitudinal Survey of Youth (NLSY79), we investigate the college attendance, dropout, and graduate behavior of high school graduates. Bivariate duration models, which allow the unobserved determinants of spell durations to be correlated across spells, are developed and used to study the impact of the waiting time from high school graduation until college enrollment on college dropout and graduation rates. We find that delaying college entry after graduating high school significantly increases the chances of college dropout and reduces the probability of attaining a four-year degree. Among those who first enroll in four-year institutions, delaying college entry by one year after high school graduation reduces the probability of graduating with a four- year degree by up to 32 percent in models that account for the endogeneity of delaying enrollment. There is also empirical evidence that the negative impact of delayed enrollment on graduation probabilities varies by Armed Forces Qualifying Test (AFQT) score with the largest estimated impact of delaying occurring for those with low AFQT scores.
Human first-trimester chorionic villi have a myogenic potential
First-trimester chorionic-villi-derived cells (FTCVs) are the earliest fetal material that can be obtained for prenatal diagnosis of fetal disorders such as Duchenne muscular dystrophy (DMD). DMD is a devastating X-linked disorder characterized by the absence of dystrophin at the sarcolemma of muscle fibers. Currently, a limited number of treatment options are available for DMD, although cell therapy is a promising treatment strategy for muscle degeneration in DMD patients. A novel candidate source of cells for this approach is FTCVs taken between the 9th and 11th weeks of gestation. FTCVs might have a higher undifferentiated potential than any other tissue-derived cells because they are the earliest fetal material. We examined the expression of mesenchymal stem cell and pluripotent stem cell markers in FTCVs, in addition to their myogenic potential. FTCVs expressed mesenchymal stem cell markers and Nanog and Sox2 transcription factors as pluripotent stem cell markers. These cells efficiently differentiated into myotubes after myogenic induction, at which point Nanog and Sox2 were down-regulated, whereas MyoD, myogenin, desmin and dystrophin were up-regulated. To our knowledge, this is the first demonstration that FTCVs can be efficiently directed to differentiate in vitro into skeletal muscle cells that express dystrophin as the last stage marker of myogenic differentiation. The myogenic potential of FTCVs reveals their promise for use in cell therapy for DMD, for which no effective treatment presently exists
Generation of Functional Human Hepatic Endoderm from Human Induced Pluripotent Stem Cells
With the advent of induced pluripotent stem cell (iPSC) technology, it is now feasible to generate iPSCs with a defined genotype or disease state. When coupled with direct differentiation of defined lineage, such as hepatic endoderm (HE). iPSC would revolutionise the way we study human liver biology and generate efficient âoff the shelfâ models of human liver disease. Here we show the `proof of concept' that iPSC lines representing both male and female sexes and two ethnic origins can be differentiated to HE at efficiencies of between 70â90%, using a method mimicking a physiological condition. iPSC-derived HE exhibited hepatic morphology, and expressed the hepatic markers, Albumin and E-Cadherin as assessed by immuno-histochemistry. They also expressed alpha fetal protein (AFP), HNF4a, and a metabolic marker, Cyp7A1, demonstrating a definitive endodermal lineage differentiation. Furthermore, iPSC-derived hepatocytes produced and secreted the plasma proteins, fibrinogen, fibronectin, transthyretin (TTR) and AFP, an essential feature for functional HE. Additionally iPSC-derived HE supported both CYP1A2 and 3A4 metabolism, which is essential for drug and toxicology testing. CONCLUSION: This work is first to demonstrate the efficient generation of hepatic endodermal lineage from human iPSC that exhibits key attributes of hepatocytes, and the potential application of iPSC-derived HE in studying human liver biology. In particular, iPSC from individuals representing highly polymorphic variants in metabolic genes and different ethnic groups will provide pharmaceutical development and toxicology studies a unique opportunity to revolutionise predictive drug toxicology assays and allow the creation of in vitro hepatic disease models
Effect of shared decision-making education on physiciansâ perceptions and practices of end-of-life care in Korea
Background Evidence of the ethical appropriateness and clinical benefits of shared decision-making (SDM) are accumulating. This study aimed to not only identify physiciansâ perspectives on SDM, and practices related to end-of-life care in particular, but also to gauge the effect of SDM education on physicians in Korea. Methods A 14-item questionnaire survey using a modified Delphi process was delivered to nephrologists and internal medicine trainees at 17 university hospitals. Results A total of 309 physicians completed the survey. Although respondents reported that 69.9% of their practical decisions were made using SDM, 59.9% reported that it is not being applied appropriately. Only 12.3% of respondents had received education on SDM as part of their training. The main obstacles to appropriate SDM were identified as lack of time (46.0%), educational materials and tools (29.4%), and education on SDM (24.3%). Although only a few respondents had received training on SDM, the proportion of those who thought they were using SDM appropriately in actual practice was high; the proportion of those who chose lack of time and education as factors that hindered the proper application of SDM was low. Conclusion The majority of respondents believed that SDM was not being implemented properly in Korea, despite its use in actual practice. To improve the effectiveness of SDM in the Korean medical system, appropriate training programs and supplemental policies that guarantee sufficient application time are required
Whole-genome, transcriptome, and methylome analyses provide insights into the evolution of platycoside biosynthesis in Platycodon grandiflorus, a medicinal plant
Triterpenoid saponins (TSs) are common plant defense phytochemicals with potential pharmaceutical properties. Platycodon grandiflorus (Campanulaceae) has been traditionally used to treat bronchitis and asthma in East Asia. The oleanane-type TSs, platycosides, are a major component of the P. grandiflorus root extract. Recent studies show that platycosides exhibit anti-inflammatory, antiobesity, anticancer, antiviral, and antiallergy properties. However, the evolutionary history of platycoside biosynthesis genes remains unknown. In this study, we sequenced the genome of P. grandiflorus and investigated the genes involved in platycoside biosynthesis. The draft genome of P. grandiflorus is 680.1Mb long and contains 40,017 protein-coding genes. Genomic analysis revealed that the CYP716 family genes play a major role in platycoside oxidation. The CYP716 gene family of P. grandiflorus was much larger than that of other Asterid species. Orthologous gene annotation also revealed the expansion of beta -amyrin synthases (bASs) in P. grandiflorus, which was confirmed by tissue-specific gene expression. In these expanded gene families, we identified key genes showing preferential expression in roots and association with platycoside biosynthesis. In addition, whole-genome bisulfite sequencing showed that CYP716 and bAS genes are hypomethylated in P. grandiflorus, suggesting that epigenetic modification of these two gene families affects platycoside biosynthesis. Thus whole-genome, transcriptome, and methylome data of P. grandiflorus provide novel insights into the regulation of platycoside biosynthesis by CYP716 and bAS gene families
Large expert-curated database for benchmarking document similarity detection in biomedical literature search
Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure.
Numerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N = 48,607), we identified at genome-wide significance (P = 2.7 Ă 10(-8) to P = 2.3 Ă 10(-13)) four new PP loci (at 4q12 near CHIC2, 7q22.3 near PIK3CG, 8q24.12 in NOV and 11q24.3 near ADAMTS8), two new MAP loci (3p21.31 in MAP4 and 10q25.3 near ADRB1) and one locus associated with both of these traits (2q24.3 near FIGN) that has also recently been associated with SBP in east Asians. For three of the new PP loci, the estimated effect for SBP was opposite of that for DBP, in contrast to the majority of common SBP- and DBP-associated variants, which show concordant effects on both traits. These findings suggest new genetic pathways underlying blood pressure variation, some of which may differentially influence SBP and DBP
Global, regional, and national incidence of six major immune-mediated inflammatory diseases: findings from the global burden of disease study 2019
BACKGROUND: The causes for immune-mediated inflammatory diseases (IMIDs) are diverse and the incidence trends of IMIDs from specific causes are rarely studied. The study aims to investigate the pattern and trend of IMIDs from 1990 to 2019. METHODS: We collected detailed information on six major causes of IMIDs, including asthma, inflammatory bowel disease, multiple sclerosis, rheumatoid arthritis, psoriasis, and atopic dermatitis, between 1990 and 2019, derived from the Global Burden of Disease study in 2019. The average annual percent change (AAPC) in number of incidents and age standardized incidence rate (ASR) on IMIDs, by sex, age, region, and causes, were calculated to quantify the temporal trends. FINDINGS: In 2019, rheumatoid arthritis, atopic dermatitis, asthma, multiple sclerosis, psoriasis, inflammatory bowel disease accounted 1.59%, 36.17%, 54.71%, 0.09%, 6.84%, 0.60% of overall new IMIDs cases, respectively. The ASR of IMIDs showed substantial regional and global variation with the highest in High SDI region, High-income North America, and United States of America. Throughout human lifespan, the age distribution of incident cases from six IMIDs was quite different. Globally, incident cases of IMIDs increased with an AAPC of 0.68 and the ASR decreased with an AAPC of â0.34 from 1990 to 2019. The incident cases increased across six IMIDs, the ASR of rheumatoid arthritis increased (0.21, 95% CI 0.18, 0.25), while the ASR of asthma (AAPC = â0.41), inflammatory bowel disease (AAPC = â0.72), multiple sclerosis (AAPC = â0.26), psoriasis (AAPC = â0.77), and atopic dermatitis (AAPC = â0.15) decreased. The ASR of overall and six individual IMID increased with SDI at regional and global level. Countries with higher ASR in 1990 experienced a more rapid decrease in ASR. INTERPRETATION: The incidence patterns of IMIDs varied considerably across the world. Innovative prevention and integrative management strategy are urgently needed to mitigate the increasing ASR of rheumatoid arthritis and upsurging new cases of other five IMIDs, respectively. FUNDING: The Global Burden of Disease Study is funded by the Bill and Melinda Gates Foundation. The project funded by Scientific Research Fund of Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital (2022QN38)
- âŠ