8 research outputs found

    Carcinoma Matrix Controls Resistance to Cisplatin through Talin Regulation of NF-kB

    Get PDF
    Extracellular matrix factors within the tumor microenvironment that control resistance to chemotherapeutics are poorly understood. This study focused on understanding matrix adhesion pathways that control the oral carcinoma response to cisplatin. Our studies revealed that adhesion of HN12 and JHU012 oral carcinomas to carcinoma matrix supported tumor cell proliferation in response to treatment with cisplatin. Proliferation in response to 30 µM cisplatin was not observed in HN12 cells adherent to other purified extracellular matrices such as Matrigel, collagen I, fibronectin or laminin I. Integrin β1 was important for adhesion to carcinoma matrix to trigger proliferation after treatment with cisplatin. Disruption of talin expression in HN12 cells adherent to carcinoma matrix increased cisplatin induced proliferation. Pharmacological inhibitors were used to determine signaling events required for talin deficiency to regulate cisplatin induced proliferation. Pharmacological inhibition of NF-kB reduced proliferation of talin-deficient HN12 cells treated with 30 µM cisplatin. Nuclear NF-kB activity was assayed in HN12 cells using a luciferase reporter of NF-kB transcriptional activity. Nuclear NF-kB activity was similar in HN12 cells adherent to carcinoma matrix and collagen I when treated with vehicle DMSO. Following treatment with 30 µM cisplatin, NF-kB activity is maintained in cells adherent to carcinoma matrix whereas NF-kB activity is reduced in collagen I adherent cells. Expression of talin was sufficient to trigger proliferation of HN12 cells adherent to collagen I following treatment with 1 and 30 µM cisplatin. Talin overexpression was sufficient to trigger NF-kB activity following treatment with cisplatin in carcinoma matrix adherent HN12 cells in a process disrupted by FAK siRNA. Thus, adhesions within the carcinoma matrix create a matrix environment in which exposure to cisplatin induces proliferation through the function of integrin β1, talin and FAK pathways that regulate NF-kB nuclear activity

    Modulation of MicroRNA-194 and cell migration by HER2-targeting trastuzumab in breast cancer

    Get PDF
    Conceived and designed the experiments: XFL GAC RCB. Performed the experiments: XFL MIA WM RS MSN SZ. Analyzed the data: XFL SR. Contributed reagents/materials/analysis tools: YW GAC. Wrote the paper: XFL RCB.Trastuzumab, a humanized monoclonal antibody directed against the extracellular domain of the HER2 oncoprotein, can effectively target HER2-positive breast cancer through several mechanisms. Although the effects of trastuzumab on cancer cell proliferation, angiogenesis and apoptosis have been investigated in depth, the effect of trastuzumab on microRNA (miRNA) has not been extensively studied. We have performed miRNA microarray profiling before and after trastuzumab treatment in SKBr3 and BT474 human breast cancer cells that overexpress HER2. We found that trastuzumab treatment of SKBr3 cells significantly decreased five miRNAs and increased three others, whereas treatment of BT474 cells significantly decreased two miRNAs and increased nine. The only change in miRNA expression observed in both cell lines following trastuzumab treatment was upregulation of miRNA-194 (miR-194) that was further validated in vitro and in vivo. Forced expression of miR-194 in breast cancer cells that overexpress HER2 produced no effect on apoptosis, modest inhibition of proliferation, significant inhibition of cell migration/invasion in vitro and significant inhibition of xenograft growth in vivo. Conversely, knockdown of miR-194 promoted cell migration. Increased miR-194 expression markedly reduced levels of the cytoskeletal protein talin2 and specifically inhibited luciferase reporter activity of a talin2 wild-type 39-untranslated region, but not that of a mutant reporter, indicating that talin2 is a direct downstream target of miR-194. Trastuzumab treatment inhibited breast cancer cell migration and reduced talin2 expression in vitro and in vivo. Knockdown of talin2 inhibited cell migration/invasion. Knockdown of trastuzumab-induced miR-194 expression with a miR-194 inhibitor compromised trastuzumab-inhibited cell migration in HER2-overexpressing breast cancer cells. Consequently, trastuzumab treatment upregulates miR-194 expression and may exert its cell migration-inhibitory effect through miR-194-mediated downregulation of cytoskeleton protein talin2 in HER2-overexpressing human breast cancer cells.This work was supported by the Anne and Henry Zarrow Foundation, kind gifts from Stuart and Gaye Lynn Zarrow and from Mrs. Delores Wilkenfeld, the Laura and John Arnold Foundation, the RGK Foundation, and the MD Anderson NCI CCSG P30 CA16672. G.A.C. is supported as a Fellow at the University of Texas MD Anderson Research Trust, as a University of Texas System Regents Research Scholar and by the CLL Global Research Foundation

    Cardiovascular Efficacy and Safety of Bococizumab in High-Risk Patients

    Get PDF
    Bococizumab is a humanized monoclonal antibody that inhibits proprotein convertase subtilisin- kexin type 9 (PCSK9) and reduces levels of low-density lipoprotein (LDL) cholesterol. We sought to evaluate the efficacy of bococizumab in patients at high cardiovascular risk. METHODS In two parallel, multinational trials with different entry criteria for LDL cholesterol levels, we randomly assigned the 27,438 patients in the combined trials to receive bococizumab (at a dose of 150 mg) subcutaneously every 2 weeks or placebo. The primary end point was nonfatal myocardial infarction, nonfatal stroke, hospitalization for unstable angina requiring urgent revascularization, or cardiovascular death; 93% of the patients were receiving statin therapy at baseline. The trials were stopped early after the sponsor elected to discontinue the development of bococizumab owing in part to the development of high rates of antidrug antibodies, as seen in data from other studies in the program. The median follow-up was 10 months. RESULTS At 14 weeks, patients in the combined trials had a mean change from baseline in LDL cholesterol levels of -56.0% in the bococizumab group and +2.9% in the placebo group, for a between-group difference of -59.0 percentage points (P<0.001) and a median reduction from baseline of 64.2% (P<0.001). In the lower-risk, shorter-duration trial (in which the patients had a baseline LDL cholesterol level of ≥70 mg per deciliter [1.8 mmol per liter] and the median follow-up was 7 months), major cardiovascular events occurred in 173 patients each in the bococizumab group and the placebo group (hazard ratio, 0.99; 95% confidence interval [CI], 0.80 to 1.22; P = 0.94). In the higher-risk, longer-duration trial (in which the patients had a baseline LDL cholesterol level of ≥100 mg per deciliter [2.6 mmol per liter] and the median follow-up was 12 months), major cardiovascular events occurred in 179 and 224 patients, respectively (hazard ratio, 0.79; 95% CI, 0.65 to 0.97; P = 0.02). The hazard ratio for the primary end point in the combined trials was 0.88 (95% CI, 0.76 to 1.02; P = 0.08). Injection-site reactions were more common in the bococizumab group than in the placebo group (10.4% vs. 1.3%, P<0.001). CONCLUSIONS In two randomized trials comparing the PCSK9 inhibitor bococizumab with placebo, bococizumab had no benefit with respect to major adverse cardiovascular events in the trial involving lower-risk patients but did have a significant benefit in the trial involving higher-risk patients

    Impedance-Based Assays Along the Life Span of Adherent Mammalian Cells In Vitro: From Initial Adhesion to Cell Death

    No full text

    Pathogens of Rats and Mice

    No full text
    corecore