116 research outputs found

    Relativistic Continuum Hartree Bogoliubov Theory for Ground State Properties of Exotic Nuclei

    Full text link
    The Relativistic Continuum Hartree-Bogoliubov (RCHB) theory, which properly takes into account the pairing correlation and the coupling to (discretized) continuum via Bogoliubov transformation in a microscopic and self-consistent way, has been reviewed together with its new interpretation of the halo phenomena observed in light nuclei as the scattering of particle pairs into the continuum, the prediction of the exotic phenomena -- giant halos in nuclei near neutron drip line, the reproduction of interaction cross sections and charge-changing cross sections in light exotic nuclei in combination with the Glauber theory, better restoration of pseudospin symmetry in exotic nuclei, predictions of exotic phenomena in hyper nuclei, and new magic numbers in superheavy nuclei, etc. Recent investigations on new effective interactions, the density dependence of the interaction strengthes, the RMF theory on the Woods-Saxon basis, the single particle resonant states, and the resonant BCS (rBCS) method for the pairing correlation, etc. are also presented in some details.Comment: 79 pages. Prog. Part. Nucl. Phys. (2005) in pres

    Nitrated Fibrinogen is A Biomarker of Oxidative Stress in Venous Thromboembolism

    Get PDF
    The pathogenesis of venous thromboembolism (VTE) is linked to inflammation and oxidant production, although specific markers for these pathways with pathological relevance to VTE have not been explored. The coagulant protein fibrinogen is posttranslationally modified by nitric oxide-derived oxidants to nitrated fibrinogen in both acute and chronic inflammatory states. Therefore, nitrated fibrinogen may serve as a marker of inflammation and oxidative stress in VTE. To test this hypothesis we enrolled subjects (n=251) presenting with suspected VTE at the University of Pennsylvania Hospital emergency department, 50 (19.9%) of whom were positive by imaging or 90-day follow-up. Mean nitrated fibrinogen was elevated in VTE-positive (62.7 nM, 95% CI 56.6–68.8) compared to VTE-negative patients (54.2 nM, 95% CI 51.4–57.1; P\u3c0.01). Patients in the highest quartile of nitrated fibrinogen had an increased risk of VTE compared with patients in the lowest quartile (OR 3.30; 95% CI 1.25–8.68; P\u3c0.05). This risk persisted after univariate adjustment for age, active cancer, and recent surgery, but not after multivariate adjustment. Mean fibrinogen levels measured either by the Clauss assay or by ELISA were not different between VTE-negative and VTE-positive patients. These data indicate that nitrated fibrinogen is an oxidative risk marker in VTE, providing a novel mechanistic link between oxidant production, inflammation, and VTE

    Prediction of a Z(c)(4000) state and relationship with the claimed Z(c)(4025)

    Get PDF
    After discussing the OZI suppression of one light meson exchange in the interaction of with isospin I = 1 , we study the contribution of the two-pion exchange to the interaction and the exchange of heavy vectors, J/psi for diagonal transitions and D-* for transitions of to J/psi rho. We find these latter mechanisms to be weak, but enough to barely bind the system in J = 2 with a mass around 4000 MeV, while the effect of the two-pion exchange is a net attraction, though weaker than that from heavy-vector exchange. We discuss this state and try to relate it to the Z (c) (4025) state, above the threshold, claimed in an experiment at BES from an enhancement of the distribution close to threshold. Together with the results from a recent reanalysis of the BES experiment showing that it is compatible with a J = 2 state below threshold around 3990 MeV, we conclude that the BES experiment could show the existence of the state that we find in our approach

    Measurement of the View the tt production cross-section using eÎŒ events with b-tagged jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the inclusive top quark pair production cross-section (σttÂŻ) with a data sample of 3.2 fb−1 of proton–proton collisions at a centre-of-mass energy of √s = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron–muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously σttÂŻ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be: σttÂŻ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented

    Charged-particle distributions in √s=13 TeV pp interactions measured with the ATLAS detector at the LHC

    Get PDF
    Charged-particle distributions are measured in proton–proton collisions at a centre-of-mass energy of 13 TeV, using a data sample of nearly 9 million events, corresponding to an integrated luminosity of 170 ÎŒb−1170 ÎŒb−1, recorded by the ATLAS detector during a special Large Hadron Collider fill. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the dependence of the mean transverse momentum on the charged-particle multiplicity are presented. The measurements are performed with charged particles with transverse momentum greater than 500 MeV and absolute pseudorapidity less than 2.5, in events with at least one charged particle satisfying these kinematic requirements. Additional measurements in a reduced phase space with absolute pseudorapidity less than 0.8 are also presented, in order to compare with other experiments. The results are corrected for detector effects, presented as particle-level distributions and are compared to the predictions of various Monte Carlo event generators

    Search for TeV-scale gravity signatures in high-mass final states with leptons and jets with the ATLAS detector at sqrt [ s ] = 13TeV

    Get PDF
    A search for physics beyond the Standard Model, in final states with at least one high transverse momentum charged lepton (electron or muon) and two additional high transverse momentum leptons or jets, is performed using 3.2 fb−1 of proton–proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015 at √s = 13 TeV. The upper end of the distribution of the scalar sum of the transverse momenta of leptons and jets is sensitive to the production of high-mass objects. No excess of events beyond Standard Model predictions is observed. Exclusion limits are set for models of microscopic black holes with two to six extra dimensions

    The performance of the jet trigger for the ATLAS detector during 2011 data taking

    Get PDF
    The performance of the jet trigger for the ATLAS detector at the LHC during the 2011 data taking period is described. During 2011 the LHC provided proton–proton collisions with a centre-of-mass energy of 7 TeV and heavy ion collisions with a 2.76 TeV per nucleon–nucleon collision energy. The ATLAS trigger is a three level system designed to reduce the rate of events from the 40 MHz nominal maximum bunch crossing rate to the approximate 400 Hz which can be written to offline storage. The ATLAS jet trigger is the primary means for the online selection of events containing jets. Events are accepted by the trigger if they contain one or more jets above some transverse energy threshold. During 2011 data taking the jet trigger was fully efficient for jets with transverse energy above 25 GeV for triggers seeded randomly at Level 1. For triggers which require a jet to be identified at each of the three trigger levels, full efficiency is reached for offline jets with transverse energy above 60 GeV. Jets reconstructed in the final trigger level and corresponding to offline jets with transverse energy greater than 60 GeV, are reconstructed with a resolution in transverse energy with respect to offline jets, of better than 4 % in the central region and better than 2.5 % in the forward direction

    Search for dark matter produced in association with a hadronically decaying vector boson in pp collisions at sqrt (s) = 13 TeV with the ATLAS detector

    Get PDF
    A search is presented for dark matter produced in association with a hadronically decaying W or Z boson using 3.2 fb−1 of pp collisions at View the MathML sources=13 TeV recorded by the ATLAS detector at the Large Hadron Collider. Events with a hadronic jet compatible with a W or Z boson and with large missing transverse momentum are analysed. The data are consistent with the Standard Model predictions and are interpreted in terms of both an effective field theory and a simplified model containing dark matter

    Measurement of the double-differential high-mass Drell-Yan cross section in pp collisions at √s = 8 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the double-differential cross section for the Drell-Yan Z/γ∗ → ℓ+ℓ− and photon-induced γγ → ℓ+ℓ− processes where ℓ is an electron or muon. The measurement is performed for invariant masses of the lepton pairs, mℓℓ, between 116 GeV and 1500 GeV using a sample of 20.3 fb−1 of pp collisions data at centre-of-mass energy of √s = 8 TeV collected by the ATLAS detector at the LHC in 2012. The data are presented double differentially in invariant mass and absolute dilepton rapidity as well as in invariant mass and absolute pseudorapidity separation of the lepton pair. The single-differential cross section as a function of mℓℓ is also reported. The electron and muon channel measurements are combined and a total experimental precision of better than 1% is achieved at low mℓℓ. A comparison to next-to-next-to-leading order perturbative QCD predictions using several recent parton distribution functions and including next-to-leading order electroweak effects indicates the potential of the data to constrain parton distribution functions. In particular, a large impact of the data on the photon PDF is demonstrated

    Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements
    • 

    corecore