41 research outputs found

    Polychromatic solar energy conversion in pigment-protein chimeras that unite the two kingdoms of (bacterio)chlorophyll-based photosynthesis

    Get PDF
    Natural photosynthesis can be divided between the chlorophyll-containing plants, algae and cyanobacteria that make up the oxygenic phototrophs and a diversity of bacteriochlorophyll-containing bacteria that make up the anoxygenic phototrophs. Photosynthetic light harvesting and reaction centre proteins from both kingdoms have been exploited for solar energy conversion, solar fuel synthesis and sensing technologies, but the energy harvesting abilities of these devices are limited by each protein’s individual palette of pigments. In this work we demonstrate a range of genetically-encoded, self-assembling photosystems in which recombinant plant light harvesting complexes are covalently locked with reaction centres from a purple photosynthetic bacterium, producing macromolecular chimeras that display mechanisms of polychromatic solar energy harvesting and conversion. Our findings illustrate the power of a synthetic biology approach in which bottom-up construction of photosystems using naturally diverse but mechanistically complementary components can be achieved in a predictable fashion through the encoding of adaptable, plug-and-play covalent interfaces

    Sustaining Electron Transfer Pathways Extends Biohybrid Photoelectrode Stability to Years

    Get PDF
    The exploitation of natural photosynthetic enzymes in semi-artificial devices constitutes an attractive and potentially sustainable route for the conversion of solar energy into electricity and solar fuels. However, the stability of photosynthetic proteins after incorporation in a biohybrid architecture typically limits the operational lifetime of biophotoelectrodes to a few hours. Here, we demonstrate ways to greatly enhance the stability of a mesoporous electrode coated with the RC-LH1 photoprotein from Rhodobacter sphaeroides. By preserving electron transfer pathways, we extended operation under continuous high-light to 33 days, and operation after storage to over two years. Coupled with large photocurrents that reached peak values of 4.6 mA cm−2, the optimized biophotoelectrode produced a cumulative output of 86 C cm−2, the largest reported performance to date. Our results demonstrate that the factor limiting stability is the architecture surrounding the photoprotein, and that biohybrid sensors and photovoltaic devices with operational lifetimes of years are feasible

    Just Bone Tired: Equine Bone Stress

    Get PDF
    The field of biophotoelectrochemistry and its application in biophotovoltaics and biosensors has gained more and more attention in recent years. Knowledge of the redox potentials of the catalytically active protein cofactors in biophotovoltaic devices is crucial for accurate modelling and in discerning the mechanisms of their operation. Here, for the first time, we used spectroelectrochemical methods to investigate thermodynamic parameters of a biophotoelectrode in situ. We determined redox potentials of two elements of the system: the primary electron donor in photosynthetic reaction centers (RCs) of the bacterium Rhodobacter sphaeroides and osmium-complex based redox mediators that are bound to a hydrogel matrix. We observe that the midpoint potential of the primary donor is shifted towards more positive potentials in comparison to literature data for RCs solubilized in buffered water solution, likely due to interaction with the polymer matrix. We also demonstrate that the osmium-complex modified redox polymer efficiently wires the RCs to the electrode, maintaining a high Internal Quantum Efficiency with approximately one electron per two photons generated (IQE=50±12%). Overall, this biophotoelectrode may be attractive for controlling the redox state of the protein when performing other types of experiments, e.g. time resolved absorption or fluorescence measurements, in order to gain insights into kinetic limitations and thereby help in the rational design of bioelectronic devices

    Demonstration of asymmetric electron conduction in pseudosymmetrical photosynthetic reaction centre proteins in an electrical circuit

    Get PDF
    Photosynthetic reaction centres show promise for biomolecular electronics as nanoscale solar-powered batteries and molecular diodes that are amenable to atomic-level re-engineering. In this work the mechanism of electron conduction across the highly tractable Rhodobacter sphaeroides reaction centre is characterized by conductive atomic force micro-scopy. We find, using engineered proteins of known structure, that only one of the two cofactor wires connecting the positive and negative termini of this reaction centre is capable of conducting unidirectional current under a suitably oriented bias, irrespective of the magnitude of the bias or the applied force at the tunnelling junction. This behaviour, strong functional asymmetry in a largely symmetrical protein–cofactor matrix, recapitulates the strong functional asymmetry characteristic of natural photochemical charge separation, but it is surprising given that the stimulus for electron flow is simply an externally applied bias. Reasons for the electrical resistance displayed by the so-called B-wire of cofactors are explored

    On the mechanism of ubiquinone mediated photocurrent generation by a reaction center based photocathode

    Get PDF
    Upon photoexcitation, the reaction center (RC) pigment-proteins that facilitate natural photosynthesis achieve a metastable separation of electrical charge among the embedded cofactors. Because of the high quantum efficiency of this process, there is a growing interest in their incorporation into biohybrid materials for solar energy conversion, bioelectronics and biosensing. Multiple bioelectrochemical studies have shown that reaction centers from various photosynthetic organisms can be interfaced with diverse electrode materials for the generation of photocurrents, but many mechanistic aspects of native protein functionality in a non-native environment is unknown. In vivo, RC's catalyse ubiquinone-10 reduction, protonation and exchange with other lipid phase ubiquinone-10s via protein-controlled spatial orientation and protein rearrangement. In contrast, the mechanism of ubiquinone-0 reduction, used to facilitate fast RC turnover in an aqueous photoelectrochemical cell (PEC), may not proceed via the same pathway as the native cofactor. In this report we show truncation of the native isoprene tail results in larger RC turnover rates in a PEC despite the removal of the tail's purported role of ubiquinone headgroup orientation and binding. Through the use of reaction centers with single or double mutations, we also show the extent to which two-electron/two-proton ubiquinone chemistry that operates in vivo also underpins the ubiquinone-0 reduction by surface-adsorbed RCs in a PEC. This reveals that only the ubiquinone headgroup is critical to the fast turnover of the RC in a PEC and provides insight into design principles for the development of new biophotovoltaic cells and biosensors

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Abstracts from the 8th International Conference on cGMP Generators, Effectors and Therapeutic Implications

    Get PDF
    This work was supported by a restricted research grant of Bayer AG

    NEOMYCIN ENHANCES GLUTARALDEHYDE CROSSLINKING AND GLYCOSAMINOGLYCAN STABILITY IN BIOPROSTHETIC HEART VALVES

    No full text
    The native heart valve will open and close an astonishing 3 billion times in the average lifetime, implicating immense biomechanical ramifications that necessitate near-flawless structure and functional behavior. Deviations from this idyllic function as a result of heart valve disease (HVD) affect millions of individuals worldwide and result in over 275,000 heart valve replacements worldwide every year. Glutaraldehyde (GLUT) cross-linked porcine aortic heart valves, a common type of bioprosthetic heart valve (BHV), are used frequently in these valve replacement surgeries. The native valve leaflets entail a tri-composite design of type I collagen, elastin and glycosaminoglycans (GAGs), each of which are important structural and functional biomechanical components. Our group has previously characterized the loss of GAGs from BHVs due to the inability of GLUT crosslinking to stabilize these structures during in-vitro storage, fatigue, enzymatic degradation, and in-vivo implantation. Consequences of GAG loss include, but are not limited to, decreased hydration, loss of tissue compliancy, altered leaflet morphology and possible compromise of collagen organization and mechanical integrity. This study explicitly examines the ability of neomycin to enhance glutaraldehyde crosslinking (NG) and stabilize GAGs. Evidence for enhanced crosslinking using neomycin was supported by increased resistance to enzymatic collagen and elastin degradation compared to that of standard GLUT crosslinking, and by a small but significant increase in collagen denaturation temperature as measured using differential scanning calorimetry. NG also exhibited a slightly diminished hydration capacity compared to GLUT crosslinking, indicating potentially adverse biomechanical effects. However, biaxial tensile testing revealed no significant alterations in compliancy in NG versus GLUT crosslinking. NG-cross-linked leaflets subjected to storage, accelerated cyclic fatigue and enzyme-mediated GAG degradation revealed improved GAG stabilization versus standard GLUT-fixed valves, which sustained substantial decreases in GAG content. Lastly, ultrastructural analysis using transmission electron microscopy qualitatively assessed preservation of GAGs in NG leaflets and yielded insight into their morphological preservation utilizing NG crosslinking. Thus, we hypothesized that preservation of the GAG matrix using NG crosslinking may help maintain biomechanical function and ultimately improve BHV tissue durability

    Photosynthetic reaction center-based biophotovoltaics

    No full text
    Photosynthesis is the principal solar energy conversion process on Earth, but is low in overall efficiency due to numerous steps necessary to fix carbon. Tapping into the high-efficiency components which drive photosynthesis, known as reaction centers, offers a route to efficiently capture solar energy. This may be achieved by direct integration of reaction centers onto electrode materials in order to extract the high potential electrons and produce electricity or fuels. This review describes the various strategies and current benchmark configurations of Photosystem-I, Photosystem-II and bacterial reaction center-based biophotoelectrodes
    corecore