30 research outputs found
Contribuição ao estudo das características físico-químicas e da fração lipídica do leite orgânico.
Produtos orgânicos consistem em uma alternativa para uma alimentação saudável. Considera-se leite orgânico aquele produzido em sistema no qual é vedado o uso de agrotóxico sintético ou outros insumos artificiais tóxicos e organismos geneticamente modificados, visando à oferta de produtos saudáveis e de elevado valor nutricional. Existem poucos dados disponíveis sobre leite orgânico na literatura, mas há indicações de que este apresenta maior teor nutritivo quando comparado ao leite produzido em sistema convencional. O objetivo deste trabalho foi caracterizar a composição físico-química, o perfil de ácidos graxos e ácido linoléico conjugado (CLA) em leites pasteurizados integrais oriundos de agricultura orgânica brasileira. Os leites orgânicos foram analisados durante o período de doze meses e os resultados comparados com aqueles obtidos de leites pasteurizados integrais provenientes de sistemas convencionais. A sazonalidade e o manejo dos animais afetaram a composição química dos leites estudados no período de doze meses. Os teores de proteína foram maiores em leite orgânico, porém tendência inversa foi observada nos níveis de gordura. Os principais ácidos graxos do leite não apresentaram diferenças significativas durante as estações do ano e entres os leites. Entretanto, foi verificado maior teor de CLA em leites orgânicos (2,8 vezes maior que em leite convencional), provavelmente devido à dieta dos animais
Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world
Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic.
Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality.
Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States.
Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis.
Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection
Large expert-curated database for benchmarking document similarity detection in biomedical literature search
Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries
Abstract
Background
Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres.
Methods
This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries.
Results
In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia.
Conclusion
This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
Physiological responses of bifidobacteria subjected to acid, cold and gastro-intestinal stress in organic and conventional milks
Bifidobacteria are exposed to various stress, as a result of environmental conditions encountered during fermented milk production, cold storage and during digestion of the products inside gastrointestinal tract. In order to improve their survival, this study aimed at understanding the degradation mechanisms of the physiological state of various Bifidobacterium strains when exposed to cold, acid and in vitro simulated gastrointestinal stress. It also intended to establish relationships between stress resistance and milk and membrane fatty acids contents, in organic and conventional milks. The results showed that acidification activity of bifidobacteria was strain-dependent and increased when bifidobacteria were associated to yogurt cultures, when organic milk was used and when incubation temperature was set at 42°C instead of 37°C. Cultivability and survival of the Bifidobacterium strains were determined after fermentation, after storage at 4°C for 7 to 28 days, and during in-vitro digestion that was simulated in a dynamic gastrointestinal tract model. These characteristics were improved in organic fermented milks as compared to conventional products, when fermentation was performed at 42°C until pH 4.4, and when the fermented milks were kept at 28°C for 12 hours before being cooled to 4°C. These specific manufacture procedures thus generated physiological adaptation of the bifidobacteria to the stress. During in-vitro digestion, cultivability of bifidobacteria was less deteriorated when they were grown in organic instead of conventional milk, and to a less extent, when the adaptation procedures were applied during fermented milk manufacture. These results were related to the higher unsaturated fatty acids content, including trans-vaccenic, conjugated linoleic and α-linoleic acids that characterize organic products. These particular fatty acids profiles of organic milks allowed bifidobacteria to modify their membrane fatty acids composition, by increasing their unsaturated fatty acids contents and by shortening the length of medium chain saturated fatty acids, thus adapting their membrane fluidity. When specific manufacture procedures were carried out to trigger physiological adaptation of the bifidobacteria, membrane fatty acid composition changed différently from what is observed in organic milk. This difference indicates that other biological adaptation mechanisms are probably involved, especially at the proteomic level. Finally, this study demonstrated that modifications at membrane level contribute to modulate resistance against technology and gastro-intestinal stress of Bifidobacterium strains to better withstand technological and gastro-intestinal stress
Réponses physiologiques de bifidobactéries soumises aux stress acide, froid et gastro-intestinal en laits biologique et conventionnel
Bifidobacteria are exposed to various stress, as a result of environmental conditions encountered during fermented milk production, cold storage and during digestion of the products inside gastrointestinal tract. In order to improve their survival, this study aimed at understanding the degradation mechanisms of the physiological state of various Bifidobacterium strains when exposed to cold, acid and in vitro simulated gastrointestinal stress. It also intended to establish relationships between stress resistance and milk and membrane fatty acids contents, in organic and conventional milks. The results showed that acidification activity of bifidobacteria was strain-dependent and increased when bifidobacteria were associated to yogurt cultures, when organic milk was used and when incubation temperature was set at 42°C instead of 37°C. Cultivability and survival of the Bifidobacterium strains were determined after fermentation, after storage at 4°C for 7 to 28 days, and during in-vitro digestion that was simulated in a dynamic gastrointestinal tract model. These characteristics were improved in organic fermented milks as compared to conventional products, when fermentation was performed at 42°C until pH 4.4, and when the fermented milks were kept at 28°C for 12 hours before being cooled to 4°C. These specific manufacture procedures thus generated physiological adaptation of the bifidobacteria to the stress. During in-vitro digestion, cultivability of bifidobacteria was less deteriorated when they were grown in organic instead of conventional milk, and to a less extent, when the adaptation procedures were applied during fermented milk manufacture. These results were related to the higher unsaturated fatty acids content, including trans-vaccenic, conjugated linoleic and α-linoleic acids that characterize organic products. These particular fatty acids profiles of organic milks allowed bifidobacteria to modify their membrane fatty acids composition, by increasing their unsaturated fatty acids contents and by shortening the length of medium chain saturated fatty acids, thus adapting their membrane fluidity. When specific manufacture procedures were carried out to trigger physiological adaptation of the bifidobacteria, membrane fatty acid composition changed différently from what is observed in organic milk. This difference indicates that other biological adaptation mechanisms are probably involved, especially at the proteomic level. Finally, this study demonstrated that modifications at membrane level contribute to modulate resistance against technology and gastro-intestinal stress of Bifidobacterium strains to better withstand technological and gastro-intestinal stress.Les bifidobactéries sont exposées à de nombreux stress, liés aux conditions environnementales rencontrées lors de la production, du stockage au froid, et pendant la digestion des laits fermentés. Afin d'améliorer leur survie, cette étude vise la compréhension des mécanismes de dégradation de l'état physiologique de différentes souches de Bifidobacterium soumises aux stress froid et acide et au stress gastro-intestinal simulé in vitro. Elle ambitionne également d'établir des relations entre la résistance aux différents stress et la teneur en acides gras membranaires et des laits biologiques et conventionnels. Les résultats montrent que l'activité acidifiante des bifidobactéries est souche-dépendante et qu'elle augmente lorsque les bactéries sont associées aux bactéries lactiques du yaourt, avec du lait biologique et lorsque la température d'incubation est fixée à 42°C au lieu de 37°C. La cultivabilité et la survie des souches ont été déterminées après fermentation, après stockage à 4°C pendant 7 à 28 jours, et pendant un processus de digestion simulé in-vitro dans un digesteur dynamique reproduisant le tractus gastro-intestinal. Ces caractéristiques sont améliorées dans les laits fermentés biologiques par rapport aux produits conventionnels, lorsque la fermentation est effectuée à 42°C jusqu'à pH 4,4, et lorsque les laits fermentés sont maintenus à 28°C pendant 12 heures avant d'être refroidi à 4°C. Ces procédures de fabrication spécifiques génèrent ainsi une adaptation physiologique des bifidobactéries aux stress. Pendant la digestion in-vitro, la cultivabilité des bifidobactéries se dégrade moins lorsque la fermentation se déroule en lait biologique plutôt qu'en lait conventionnel et, dans une moindre mesure, lorsque les procédures d'adaptation sont appliquées pendant la fabrication du lait fermenté. Ces résultats sont liés aux teneurs plus élevées en acides gras insaturés, en particulier en acides trans-vaccénique, linoléique conjugué et α-linolénique, qui caractérisent les produits biologiques. Ces profils d'acides gras particuliers aux laits biologiques permettent aux bifidobactéries de modifier leur composition en acides gras membranaires, en augmentant leur teneur en acides gras insaturés et en raccourcissant la longueur moyenne des chaînes d'acides gras saturés, adaptant ainsi leur fluidité membranaire. Lorsque les procédures de fabrication spécifiques sont mises en oeuvre pour induire une adaptation physiologique des bifidobactéries, la composition en acides gras des membranes se modifie différemment de ce qui est observé en lait biologique. Cette différence indique ainsi que d'autres mécanismes biologiques d'adaptation sont probablement impliqués, en particulier au niveau protéomique. Finalement, cette étude démontre que les modifications au niveau de la membrane contribuent à moduler la résistance aux stress technologique et gastro-intestinal de souches de Bifidobacterium
Technological profile of bifidobacteria strains in pure culture and in co-culture with Streptococcus thermophilus in organic and conventional milks
A crescente preocupação com tecnologias sustentáveis e a procura de novos alimentos funcionais despertam o interesse para o desenvolvimento de novos produtos alimentícios que proporcionem, além da nutrição, benefícios à saúde do consumidor. Assim, esse trabalho visa propor o leite orgânico como potencial matéria-prima para a fabricação de leites fermentados probióticos. Para tanto, estudou-se o perfil tecnológico de cepas de bifidobactéria em cultura pura e em co-cultura com Streptococcus thermophilus em leites orgânico e convencional, analisando a composição química dos leites, determinando o perfil de acidificação de quatro cepas de Bifidobacterium animalis subsp. lactis em cultura pura e em co-cultura com Streptococcus thermophilus, verificando a contagem microbiológica das culturas probióticas e iniciadoras nos leites fermentados, examinando o perfil de ácidos graxos e o teor de ácido linoléico conjugado dos leites fermentados e determinando o perfil de textura dos leites fermentados. A maior velocidade de acidificação foi observada para as cepas B94 e BL04 em leite orgânico e para a cepa HN019, para ambos os tipos de leite. As contagens de todas as cepas de B. animalis subsp. lactis foram superiores a 8,58 log10 unidades formadoras de colônia (UFC).mL-1</SUP. O leite orgânico apresentou maiores teores de ferro e proteína, enquanto o leite convencional apresentou maiores teores de gordura e lactose. Os principais ácidos graxos foram pouco influenciados pelo tipo de leite e as maiores quantidades de ácido linoléico conjugado (65 % maior do que o controle) foram encontradas em leite orgânico fermentado com a cepa BB12 em co-cultura com S. thermophilus. Assim, verificou-se que o leite orgânico pode ser empregado como matéria-prima na fabricação de leites fermentados probióticos, agregando qualidade nutricional ao produto final.The concern about sustainable technologies and demand for new functional foods arouses the interest for the development of new food products in addition to provide nutrition and health benefits to the consumer. Thus, this work aims to offer organic milk as a potential raw material for the manufacture of probiotic fermented milk. Therefore, studying the technological profile of strains of bifidobacteria in pure culture and in co-culture with Streptococcus thermophilus in organic and conventional milks, analyzing the chemical composition of milk; determining the profile of acidification of four strains of Bifidobacterium animalis subsp. lactis in pure culture and in co-culture with Streptococcus thermophilus; checking the counts of starter and probiotic cultures in fermented milks; examining the profile of fatty acids and conjugated linoleic acid content of fermented milks and the profile of texture of fermented milks. The highest rate of acidification profile was observed for the strains BL04 and B94 in organic milk and for the strain HN019 in both milks. The counts of all strains of B. animalis subsp. lactis were higher than 8.58 log10 colony forming units (CFU). mL-1. The organic milk had higher levels of iron and protein, whereas conventional milk had higher levels of fat and lactose. The main fatty acids were not influenced by the type of milk and higher amounts of conjugated linoleic acid (65% higher than the control) were found in organic fermented milk with the strain BB12 in co-culture with S. thermophilus. Thus, it was found that organic milk can be used as raw material in the manufacture of probiotic fermented milk, increasing nutritional quality to final product
Physiological responses of bifidobacteria subjected to acid, cold and gastro-intestinal stress in organic and conventional milks
Les bifidobactéries sont exposées à de nombreux stress, liés aux conditions environnementales rencontrées lors de la production, du stockage au froid, et pendant la digestion des laits fermentés. Afin d'améliorer leur survie, cette étude vise la compréhension des mécanismes de dégradation de l'état physiologique de différentes souches de Bifidobacterium soumises aux stress froid et acide et au stress gastro-intestinal simulé in vitro. Elle ambitionne également d'établir des relations entre la résistance aux différents stress et la teneur en acides gras membranaires et des laits biologiques et conventionnels. Les résultats montrent que l'activité acidifiante des bifidobactéries est souche-dépendante et qu'elle augmente lorsque les bactéries sont associées aux bactéries lactiques du yaourt, avec du lait biologique et lorsque la température d'incubation est fixée à 42°C au lieu de 37°C. La cultivabilité et la survie des souches ont été déterminées après fermentation, après stockage à 4°C pendant 7 à 28 jours, et pendant un processus de digestion simulé in-vitro dans un digesteur dynamique reproduisant le tractus gastro-intestinal. Ces caractéristiques sont améliorées dans les laits fermentés biologiques par rapport aux produits conventionnels, lorsque la fermentation est effectuée à 42°C jusqu'à pH 4,4, et lorsque les laits fermentés sont maintenus à 28°C pendant 12 heures avant d'être refroidi à 4°C. Ces procédures de fabrication spécifiques génèrent ainsi une adaptation physiologique des bifidobactéries aux stress. Pendant la digestion in-vitro, la cultivabilité des bifidobactéries se dégrade moins lorsque la fermentation se déroule en lait biologique plutôt qu'en lait conventionnel et, dans une moindre mesure, lorsque les procédures d'adaptation sont appliquées pendant la fabrication du lait fermenté. Ces résultats sont liés aux teneurs plus élevées en acides gras insaturés, en particulier en acides trans-vaccénique, linoléique conjugué et α-linolénique, qui caractérisent les produits biologiques. Ces profils d'acides gras particuliers aux laits biologiques permettent aux bifidobactéries de modifier leur composition en acides gras membranaires, en augmentant leur teneur en acides gras insaturés et en raccourcissant la longueur moyenne des chaînes d'acides gras saturés, adaptant ainsi leur fluidité membranaire. Lorsque les procédures de fabrication spécifiques sont mises en oeuvre pour induire une adaptation physiologique des bifidobactéries, la composition en acides gras des membranes se modifie différemment de ce qui est observé en lait biologique. Cette différence indique ainsi que d'autres mécanismes biologiques d'adaptation sont probablement impliqués, en particulier au niveau protéomique. Finalement, cette étude démontre que les modifications au niveau de la membrane contribuent à moduler la résistance aux stress technologique et gastro-intestinal de souches de Bifidobacterium.Bifidobacteria are exposed to various stress, as a result of environmental conditions encountered during fermented milk production, cold storage and during digestion of the products inside gastrointestinal tract. In order to improve their survival, this study aimed at understanding the degradation mechanisms of the physiological state of various Bifidobacterium strains when exposed to cold, acid and in vitro simulated gastrointestinal stress. It also intended to establish relationships between stress resistance and milk and membrane fatty acids contents, in organic and conventional milks. The results showed that acidification activity of bifidobacteria was strain-dependent and increased when bifidobacteria were associated to yogurt cultures, when organic milk was used and when incubation temperature was set at 42°C instead of 37°C. Cultivability and survival of the Bifidobacterium strains were determined after fermentation, after storage at 4°C for 7 to 28 days, and during in-vitro digestion that was simulated in a dynamic gastrointestinal tract model. These characteristics were improved in organic fermented milks as compared to conventional products, when fermentation was performed at 42°C until pH 4.4, and when the fermented milks were kept at 28°C for 12 hours before being cooled to 4°C. These specific manufacture procedures thus generated physiological adaptation of the bifidobacteria to the stress. During in-vitro digestion, cultivability of bifidobacteria was less deteriorated when they were grown in organic instead of conventional milk, and to a less extent, when the adaptation procedures were applied during fermented milk manufacture. These results were related to the higher unsaturated fatty acids content, including trans-vaccenic, conjugated linoleic and α-linoleic acids that characterize organic products. These particular fatty acids profiles of organic milks allowed bifidobacteria to modify their membrane fatty acids composition, by increasing their unsaturated fatty acids contents and by shortening the length of medium chain saturated fatty acids, thus adapting their membrane fluidity. When specific manufacture procedures were carried out to trigger physiological adaptation of the bifidobacteria, membrane fatty acid composition changed différently from what is observed in organic milk. This difference indicates that other biological adaptation mechanisms are probably involved, especially at the proteomic level. Finally, this study demonstrated that modifications at membrane level contribute to modulate resistance against technology and gastro-intestinal stress of Bifidobacterium strains to better withstand technological and gastro-intestinal stress
Increased CLA content in organic milk fermented by bifidobacteria or yoghurt cultures
This study investigates the kinetics of acidification, fatty acid (FA) profile and conjugated linoleic acid (CLA, C18:2 c9, t11) content in fermented milks prepared from organic and conventional milk. Fermented milks were manufactured with five mixed cultures: four different strains of Bifidobacterium animalis subsp. lactis (BL04, B94, BB12 and HN019) and Lactobacillus delbrueckii subsp. bulgaricus LB340, in co-culture with Streptococcus thermophilus TA040. The composition of milk was evaluated, and the kinetics of acidification was followed by continuous pH measurement using the Cinac system. The profile of FA, including CLA, was analyzed by gas chromatography. The chemical composition of conventional and organic milk was similar, with the exception of protein and Fe, the concentrations of which were higher in the organic milk. The rate of acidification was significantly influenced by the type of milk and the bacterial strain used. Co-cultures St-HN019 and St-BB12 showed higher maximal acidification rates in both milks. Final counts of S. thermophilus (9.0-10.1 log(10) colony forming units (CFU) . mL(-1), L)actobacillus bulgaricus (8.2-8.5 log(10) CFU . mL(-1)) and B. animalis subsp. lactis strains (8.3-9.3 log(10) CFU . mL(-1)) did not differ significantly in either milk. Unexpectedly, all fermented organic milks contained significantly higher amounts of CLA than the same milk before fermentation, whereas CLA amounts did not change during fermentation of conventional milk. Regardless of the type of milk, CLA was found to be significantly positively correlated with trans-vaccenic acid and negatively correlated with linoleic acid. Moreover, the CLA contents were significantly higher in fermented milks showing shorter fermentation times.FAPESPCNP