425 research outputs found
Energy radiation of moving cracks
The energy radiated by moving cracks in a discrete background is analyzed.
The energy flow through a given surface is expressed in terms of a generalized
Poynting vector. The velocity of the crack is determined by the radiation by
the crack tip. The radiation becomes more isotropic as the crack velocity
approaches the instability threshold.Comment: 7 pages, embedded figure
CP Violation in B and K Decays: 2003
These lectures give a brief description of CP violation in B and K meson
decays with particular emphasize put on the determination of the CKM matrix.
The following topics will be discussed: i) The CKM matrix, the unitarity
triangle and general aspects of the theoretical framework, ii)
Particle-antiparticle mixing and various types of CP violation, iii) Standard
analysis of the unitarity triangle, iv) The ratio epsilon^prime/epsilon, v) The
most important strategies for the determination of the angles ,
and from B decays, vi) Rare decays and
vii) Models with minimal flavour violation.Comment: Schladming lectures 2003, Main latex-file, 8 figures, 51 page
Globally-Linked Vortex Clusters in Trapped Wave Fields
We put forward the existence of a rich variety of fully stationary vortex
structures, termed H-clusters, made of an increasing number of vortices nested
in paraxial wave fields confined by trapping potentials. However, we show that
the constituent vortices are globally linked, rather than products of
independent vortices. Also, they always feature a monopolar global wave front
and exist in nonlinear systems, such as Bose-Einstein condensates. Clusters
with multipolar global wave fronts are non-stationary or at best flipping.Comment: 4 pages, 5 PostScript figure
Online, Real-Time Tracking Using a Category-to-Individual Detector
A method for online, real-time tracking of objects is presented. Tracking is treated as a repeated detection problem where potential target objects are identified with a pre-trained category detector and object identity across frames is established by individual-specific detectors. The individual detectors are (re-)trained online from a single
positive example whenever there is a coincident category detection. This ensures that the tracker is robust to drift. Real-time operation is possible since an individual-object detector is obtained through elementary manipulations of the thresholds of the category detector and therefore only minimal additional computations are required. Our tracking algorithm is benchmarked against nine state-of-the-art trackers on two large, publicly available and challenging video datasets. We find that our algorithm is 10% more accurate and nearly as fast as the fastest of the competing algorithms, and it is as accurate but 20 times faster than the most accurate of the competing algorithms
Eureka and beyond: mining's impact on African urbanisation
This collection brings separate literatures on mining and urbanisation together at a time when both artisanal and large-scale mining are expanding in many African economies. While much has been written about contestation over land and mineral rights, the impact of mining on settlement, notably its catalytic and fluctuating effects on migration and urban growth, has been largely ignored. African nation-states’ urbanisation trends have shown considerable variation over the past half century. The current surge in ‘new’ mining countries and the slow-down in ‘old’ mining countries are generating some remarkable settlement patterns and welfare outcomes. Presently, the African continent is a laboratory of national mining experiences. This special issue on African mining and urbanisation encompasses a wide cross-section of country case studies: beginning with the historical experiences of mining in Southern Africa (South Africa, Zambia, Zimbabwe), followed by more recent mineralizing trends in comparatively new mineral-producing countries (Tanzania) and an established West African gold producer (Ghana), before turning to the influence of conflict minerals (Angola, the Democratic Republic of Congo and Sierra Leone)
Supercoherent States, Super K\"ahler Geometry and Geometric Quantization
Generalized coherent states provide a means of connecting square integrable
representations of a semi-simple Lie group with the symplectic geometry of some
of its homogeneous spaces. In the first part of the present work this point of
view is extended to the supersymmetric context, through the study of the
OSp(2/2) coherent states. These are explicitly constructed starting from the
known abstract typical and atypical representations of osp(2/2). Their
underlying geometries turn out to be those of supersymplectic OSp(2/2)
homogeneous spaces. Moment maps identifying the latter with coadjoint orbits of
OSp(2/2) are exhibited via Berezin's symbols. When considered within
Rothstein's general paradigm, these results lead to a natural general
definition of a super K\"ahler supermanifold, the supergeometry of which is
determined in terms of the usual geometry of holomorphic Hermitian vector
bundles over K\"ahler manifolds. In particular, the supergeometry of the above
orbits is interpreted in terms of the geometry of Einstein-Hermitian vector
bundles. In the second part, an extension of the full geometric quantization
procedure is applied to the same coadjoint orbits. Thanks to the super K\"ahler
character of the latter, this procedure leads to explicit super unitary
irreducible representations of OSp(2/2) in super Hilbert spaces of
superholomorphic sections of prequantum bundles of the Kostant type. This work
lays the foundations of a program aimed at classifying Lie supergroups'
coadjoint orbits and their associated irreducible representations, ultimately
leading to harmonic superanalysis. For this purpose a set of consistent
conventions is exhibited.Comment: 53 pages, AMS-LaTeX (or LaTeX+AMSfonts
Search for pair production of the scalar top quark in muon+tau final states
We present a search for the pair production of scalar top quarks
(), the lightest supersymmetric partners of the top quarks, in
collisions at a center-of-mass energy of 1.96 TeV, using data
corresponding to an integrated luminosity of {7.3 } collected with the
\dzero experiment at the Fermilab Tevatron Collider. Each scalar top quark is
assumed to decay into a quark, a charged lepton, and a scalar neutrino
(). We investigate final states arising from and
. With no significant excess of events observed above the
background expected from the standard model, we set exclusion limits on this
production process in the (,) plane.Comment: Submitted to Phys. Lett.
Search for black holes and other new phenomena in high-multiplicity final states in proton-proton collisions at root s=13 TeV
Peer reviewe
Search for high-mass diphoton resonances in proton-proton collisions at 13 TeV and combination with 8 TeV search
Peer reviewe
Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector
The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements
- …
