9 research outputs found

    Simple PCR Assays Improve the Sensitivity of HIV-1 Subtype B Drug Resistance Testing and Allow Linking of Resistance Mutations

    Get PDF
    The success of antiretroviral therapy is known to be compromised by drug-resistant HIV-1 at frequencies detectable by conventional bulk sequencing. Currently, there is a need to assess the clinical consequences of low-frequency drug resistant variants occurring below the detection limit of conventional genotyping. Sensitive detection of drug-resistant subpopulations, however, requires simple and practical methods for routine testing.We developed highly-sensitive and simple real-time PCR assays for nine key drug resistance mutations and show that these tests overcome substantial sequence heterogeneity in HIV-1 clinical specimens. We specifically used early wildtype virus samples from the pre-antiretroviral drug era to measure background reactivity and were able to define highly-specific screening cut-offs that are up to 67-fold more sensitive than conventional genotyping. We also demonstrate that sequencing the mutation-specific PCR products provided a direct and novel strategy to further detect and link associated resistance mutations, allowing easy identification of multi-drug-resistant variants. Resistance mutation associations revealed in mutation-specific amplicon sequences were verified by clonal sequencing.Combined, sensitive real-time PCR testing and mutation-specific amplicon sequencing provides a powerful and simple approach that allows for improved detection and evaluation of HIV-1 drug resistance mutations

    Past, present and future molecular diagnosis and characterization of human immunodeficiency virus infections

    No full text
    Substantive and significant advances have been made in the last two decades in the characterization of human immunodeficiency virus (HIV) infections using molecular techniques. These advances include the use of real-time measurements, isothermal amplification, the inclusion of internal quality assurance protocols, device miniaturization and the automation of specimen processing. The result has been a significant increase in the availability of results to a high level of accuracy and quality. Molecular assays are currently widely used for diagnostics, antiretroviral monitoring and drug resistance characterization in developed countries. Simple and cost-effective point-of-care versions are also being vigorously developed with the eventual goal of providing timely healthcare services to patients residing in remote areas and those in resource-constrained countries. In this review, we discuss the evolution of these molecular technologies, not only in the context of the virus, but also in the context of tests focused on human genomics and transcriptomics

    Meta-analyses of colorectal cancer risk factors

    No full text

    One stop mycology

    No full text
    corecore