4,999 research outputs found

    N-body Simulations of Satellite Formation around Giant Planets: Origin of Orbital Configuration of the Galilean Moons

    Full text link
    As the number of discovered extrasolar planets has been increasing, diversity of planetary systems requires studies of new formation scenarios. It is important to study satellite formation in circumplanetary disks, which is often viewed as analogous to formation of rocky planets in protoplanetary disks. We investigated satellite formation from satellitesimals around giant planets through N-body simulations that include gravitational interactions with a circumplanetary gas disk. Our main aim is to reproduce the observable properties of the Galilean satellites around Jupiter through numerical simulations, as previous N-body simulations have not explained the origin of the resonant configuration. We performed accretion simulations based on the work of Sasaki et al. (2010), in which an inner cavity is added to the model of Canup & Ward (2002, 2006). We found that several satellites are formed and captured in mutual mean motion resonances outside the disk inner edge and are stable after rapid disk gas dissipation, which explains the characteristics of the Galilean satellites. In addition, owing to the existence of the disk edge, a radial compositional gradient of the Galilean satellites can also be reproduced. An additional objective of this study is to discuss orbital properties of formed satellites for a wide range of conditions by considering large uncertainties in model parameters. Through numerical experiments and semianalytical arguments, we determined that if the inner edge of a disk is introduced, a Galilean-like configuration in which several satellites are captured into a 2:1 resonance outside the disk inner cavity is almost universal. In fact, such a configuration is produced even for a massive disk and rapid type I migration. This result implies the inevitability of a Galilean satellite formation in addition to providing theoretical predictions for extrasolar satellites.Comment: 20 pages, 9 figures, accepted for publication in Ap

    Suppression of type I migration by disk winds

    Full text link
    Planets less massive than Saturn tend to rapidly migrate inward in protoplanetary disks. This is the so-called type I migration. Simulations attempting to reproduce the observed properties of exoplanets show that type I migration needs to be significantly reduced over a wide region of the disk for a long time. However, the mechanism capable of suppressing type I migration over a wide region has remained elusive. The recently found turbulence-driven disk winds offer new possibilities. We investigate the effects of disk winds on the disk profile and type I migration for a range of parameters that describe the strength of disk winds. We also examine the in situ formation of close-in super-Earths in disks that evolve through disk winds. The disk profile, which is regulated by viscous diffusion and disk winds, was derived by solving the diffusion equation. We carried out a number of simulations and plot here migration maps that indicate the type I migration rate. We also performed N-body simulations of the formation of close-in super-Earths from a population of planetesimals and planetary embryos. We define a key parameter, Kw, which determines the ratio of strengths between the viscous diffusion and disk winds. For a wide range of Kw, the type I migration rate is presented in migration maps. These maps show that type I migration is suppressed over the whole close-in region when the effects of disk winds are relatively strong (Kw < 100). From the results of N-body simulations, we see that type I migration is significantly slowed down assuming Kw = 40. We also show that the results of N-body simulations match statistical orbital distributions of close-in super-Earths.Comment: 5 pages, 4 figures, accepted for publication in A&A Letter

    Fission fragment mass reconstruction from Si surface barrier detector measurement

    Full text link
    A method for plasma delay and pulse-height defect corrections for Si surface barrier detectors (SBD) is presented. Based on known empirical formulae, simple approximations involving the measured time-of-flight (TOF) and energy of the ions were found and a mass reconstruction procedure was developed. The procedure was applied for obtaining the fission fragment mass and angular distributions from the 64^{64} Ni+197^{197}Au reaction at 418 MeV and 383 MeV incident energy using an array of eight SBDs.Comment: 3 pages, 1 table, 3 figures, submitted to NIM A ; 4 pages, 1 table, 5 figures, added discussion and figure
    • …
    corecore