4,654 research outputs found

    PSBS: Practical Size-Based Scheduling

    Full text link
    Size-based schedulers have very desirable performance properties: optimal or near-optimal response time can be coupled with strong fairness guarantees. Despite this, such systems are very rarely implemented in practical settings, because they require knowing a priori the amount of work needed to complete jobs: this assumption is very difficult to satisfy in concrete systems. It is definitely more likely to inform the system with an estimate of the job sizes, but existing studies point to somewhat pessimistic results if existing scheduler policies are used based on imprecise job size estimations. We take the goal of designing scheduling policies that are explicitly designed to deal with inexact job sizes: first, we show that existing size-based schedulers can have bad performance with inexact job size information when job sizes are heavily skewed; we show that this issue, and the pessimistic results shown in the literature, are due to problematic behavior when large jobs are underestimated. Once the problem is identified, it is possible to amend existing size-based schedulers to solve the issue. We generalize FSP -- a fair and efficient size-based scheduling policy -- in order to solve the problem highlighted above; in addition, our solution deals with different job weights (that can be assigned to a job independently from its size). We provide an efficient implementation of the resulting protocol, which we call Practical Size-Based Scheduler (PSBS). Through simulations evaluated on synthetic and real workloads, we show that PSBS has near-optimal performance in a large variety of cases with inaccurate size information, that it performs fairly and it handles correctly job weights. We believe that this work shows that PSBS is indeed pratical, and we maintain that it could inspire the design of schedulers in a wide array of real-world use cases.Comment: arXiv admin note: substantial text overlap with arXiv:1403.599

    gMotion: A spatio-temporal grammar for the procedural generation of motion graphics

    Get PDF
    Creating by hand compelling 2D animations that choreograph several groups of shapes requires a large number of manual edits. We present a method to procedurally generate motion graphics with timeslice grammars. Timeslice grammars are to time what split grammars are to space. We use this grammar to formally model motion graphics, manipulating them in both temporal and spatial components. We are able to combine both these aspects by representing animations as sets of affine transformations sampled uniformly in both space and time. Rules and operators in the grammar manipulate all spatio-temporal matrices as a whole, allowing us to expressively construct animation with few rules. The grammar animates shapes, which are represented as highly tessellated polygons, by applying the affine transforms to each shape vertex given the vertex position and the animation time. We introduce a small set of operators showing how we can produce 2D animations of geometric objects, by combining the expressive power of the grammar model, the composability of the operators with themselves, and the capabilities that derive from using a unified spatio-temporal representation for animation data. Throughout the paper, we show how timeslice grammars can produce a wide variety of animations that would take artists hours of tedious and time-consuming work. In particular, in cases where change of shapes is very common, our grammar can add motion detail to large collections of shapes with greater control over per-shape animations along with a compact rules structure

    Band structure and atomic sum rules for x-ray dichroism

    Full text link
    Corrections to the atomic orbital sum rule for circular magnetic x-ray dichroism in solids are derived using orthonormal LMTOs as a single-particle basis for electron band states.Comment: 7 pages, no figure

    Central potentials for polyatomic molecules. 1 - A survey of morse potentials determined from viscosity and the second virial coefficient

    Get PDF
    Morse potential function used to approximate pair interaction potential for wide variety of hydrocarbons determined from viscosity and second virial coefficien

    Cloud-based Content Distribution on a Budget

    Full text link
    To leverage the elastic nature of cloud computing, a solution provider must be able to accurately gauge demand for its offering. For applications that involve swarm-to-cloud interactions, gauging such demand is not straightforward. In this paper, we propose a general framework, analyze a mathematical model, and present a prototype implementation of a canonical swarm-to-cloud application, namely peer-assisted content delivery. Our system – called Cyclops – dynamically adjusts the off-cloud bandwidth consumed by content servers (which represents the bulk of the provider's cost) to feed a set of swarming clients, based on a feedback signal that gauges the real-time health of the swarm. Our extensive evaluation of Cyclops in a variety of settings – including controlled PlanetLab and live Internet experiments involving thousands of users – show significant reduction in content distribution costs (by as much as two orders of magnitude) when compared to non-feedback-based swarming solutions, with minor impact on content delivery times

    Revisiting Size-Based Scheduling with Estimated Job Sizes

    Full text link
    We study size-based schedulers, and focus on the impact of inaccurate job size information on response time and fairness. Our intent is to revisit previous results, which allude to performance degradation for even small errors on job size estimates, thus limiting the applicability of size-based schedulers. We show that scheduling performance is tightly connected to workload characteristics: in the absence of large skew in the job size distribution, even extremely imprecise estimates suffice to outperform size-oblivious disciplines. Instead, when job sizes are heavily skewed, known size-based disciplines suffer. In this context, we show -- for the first time -- the dichotomy of over-estimation versus under-estimation. The former is, in general, less problematic than the latter, as its effects are localized to individual jobs. Instead, under-estimation leads to severe problems that may affect a large number of jobs. We present an approach to mitigate these problems: our technique requires no complex modifications to original scheduling policies and performs very well. To support our claim, we proceed with a simulation-based evaluation that covers an unprecedented large parameter space, which takes into account a variety of synthetic and real workloads. As a consequence, we show that size-based scheduling is practical and outperforms alternatives in a wide array of use-cases, even in presence of inaccurate size information.Comment: To be published in the proceedings of IEEE MASCOTS 201
    • …
    corecore