8 research outputs found

    Low-Level Prenatal and Postnatal Blood Lead Exposure and Adrenocortical Responses to Acute Stress in Children

    Get PDF
    BACKGROUND: A few recent studies have demonstrated heightened hypothalamic–pituitary–adrenal (HPA) axis reactivity to acute stress in animals exposed to heavy metal contaminants, particularly lead. However, Pb-induced dysregulation of the HPA axis has not yet been studied in humans. OBJECTIVE: In this study, we examined children’s cortisol response to acute stress (the glucocorticoid product of HPA activation) in relation to low-level prenatal and postnatal Pb exposure. METHODS: Children’s prenatal blood Pb levels were determined from cord blood specimens, and postnatal lead levels were abstracted from pediatrician and state records. Children’s adrenocortical responses to an acute stressor were measured using assays of salivary cortisol before and after administration of a standard cold pressor task. RESULTS: Pb exposure was not associated with initial salivary cortisol levels. After an acute stressor, however, increasing prenatal and postnatal blood Pb levels were independently associated with significantly heightened salivary cortisol responses. CONCLUSIONS: Our results suggest that relatively low prenatal and postnatal blood lead levels— notably those below the 10 µg/dL blood lead level identified by the Centers for Disease Control and Prevention for public health purposes—can alter children’s adrenocortical responses to acute stress. The behavioral and health consequences of this Pb-induced HPA dysregulation in children have yet to be determined

    The PREDICTS database: a global database of how local terrestrial biodiversity responds to human impacts

    Get PDF
    Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species’ threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project – and avert – future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups – including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems – www.predicts.org.uk). We make site-level summary data available alongside this article. The full database will be publicly available in 2015

    Structural basis of phosphatidic acid sensing by APH in apicomplexan parasites

    Get PDF
    Plasmodium falciparum and Toxoplasma gondii are obligate intracellular parasites that belong to the phylum of Apicomplexa and cause major human diseases. Their access to an intracellular lifestyle is reliant on the coordinated release of proteins from the specialized apical organelles called micronemes and rhoptries. A specific phosphatidic acid effector, the acylated pleckstrin homology domain-containing protein (APH) plays a central role in microneme exocytosis and thus is essential for motility, cell entry, and egress. TgAPH is acylated on the surface of the micronemes and recruited to phosphatidic acid (PA)-enriched membranes. Here, we dissect the atomic details of APH PA-sensing hub and its functional interaction with phospholipid membranes. We unravel the key determinant of PA recognition for the first time and show that APH inserts into and clusters multiple phosphate head-groups at the bilayer binding surface

    INFO2009 - Group 15 - Copyright, Patents and Trademarks

    No full text
    Set of lecture notes and interactive questions on Copyright, Patents and Trademark

    The PREDICTS database : a global database of how local terrestrial biodiversity responds to human impacts

    No full text

    The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project

    No full text

    The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project

    Get PDF
    The PREDICTS project—Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)—has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity
    corecore