379 research outputs found

    Engineering periplasmic ligand binding proteins as glucose nanosensors

    Get PDF
    Diabetes affects over 100 million people worldwide. Better methods for monitoring blood glucose levels are needed for improving disease management. Several labs have previously made glucose nanosensors by modifying members of the periplasmic ligand binding protein superfamily. This minireview summarizes recent developments in constructing new versions of these proteins that are responsive within the physiological range of blood glucose levels, employ new reporter groups, and/or are more robust. These experiments are important steps in the development of novel proteins that have the characteristics needed for an implantable glucose nanosensor for diabetes management: specificity for glucose, rapid response, sensitivity within the physiological range of glucose concentrations, reproducibility, and robustness

    The ethics of digital well-being: a multidisciplinary perspective

    Get PDF
    This chapter serves as an introduction to the edited collection of the same name, which includes chapters that explore digital well-being from a range of disciplinary perspectives, including philosophy, psychology, economics, health care, and education. The purpose of this introductory chapter is to provide a short primer on the different disciplinary approaches to the study of well-being. To supplement this primer, we also invited key experts from several disciplines—philosophy, psychology, public policy, and health care—to share their thoughts on what they believe are the most important open questions and ethical issues for the multi-disciplinary study of digital well-being. We also introduce and discuss several themes that we believe will be fundamental to the ongoing study of digital well-being: digital gratitude, automated interventions, and sustainable co-well-being

    Age-dependent effects of low-dose nicotine treatment on cocaine-induced behavioral plasticity in rats

    Get PDF
    Epidemiological evidence of early adolescent tobacco use, prior to that of marijuana and other illicit drugs, has led to the hypothesis that nicotine is a “gateway” drug that sensitizes reward pathways to the addictive effects of other psychostimulants. To test this hypothesis, we have compared the effect of a brief, low-dose nicotine pretreatment of adolescent and adult rats on subsequent locomotor response to acute and chronic cocaine. Adolescents, aged postnatal day (P) 28, and adults, aged P86, were given four daily injections of saline or nicotine (0.06 mg/kg, i.v.). At P32 and P90, rats were given acute injections of cocaine (0, 0.4 or 1.0 mg/kg, i.v.) and monitored for locomotor activity in either a habituated or novel test environment. To examine cocaine sensitization, rats were treated for 3 days with saline or cocaine (0.4 mg/kg, i.v.), and, after 1 day of withdrawal, were given a challenge dose of cocaine (0.4 mg/kg, i.v.). Nicotine pretreatment did not affect acute, drug-induced locomotor activity at either age. However, age differences in cocaine response were observed, with adolescent animals showing enhanced locomotor activity in the novel environment. Adolescent controls did not exhibit cocaine-induced locomotor sensitization, whereas adults did. Nicotine pretreatment during adolescence promoted the development and expression of a sensitized response to repeated cocaine exposure similar to that observed in saline-pretreated adult controls. These findings show that brief pretreatment with nicotine, in a low dose comparable to that inhaled in 2–4 cigarettes, enhances cocaine-induced behavioral plasticity in adolescent rats

    Cell Cycle Regulation and Cytoskeletal Remodelling Are Critical Processes in the Nutritional Programming of Embryonic Development

    Get PDF
    Many mechanisms purport to explain how nutritional signals during early development are manifested as disease in the adult offspring. While these describe processes leading from nutritional insult to development of the actual pathology, the initial underlying cause of the programming effect remains elusive. To establish the primary drivers of programming, this study aimed to capture embryonic gene and protein changes in the whole embryo at the time of nutritional insult rather than downstream phenotypic effects. By using a cross-over design of two well established models of maternal protein and iron restriction we aimed to identify putative common “gatekeepers” which may drive nutritional programming

    The Impact of Simulated Sulfate Deposition on Peatland Testate Amoebae

    Get PDF
    Peatlands subjected to sulfate deposition have been shown to produce less methane, believed to be due to competitive exclusion of methanogenic archaea by sulfate-reducing bacteria. Here, we address whether sulfate deposition produces impacts on a higher microbial group, the testate amoebae. Sodium sulfate was applied to experimental plots on a Scottish peatland and samples extracted after a period of more than 10 years. Impacts on testate amoebae were tested using redundancy analysis and Mann-Whitney tests. Results showed statistically significant impacts on amoebae communities particularly noted by decreased abundance of Trinema lineare, Corythion dubium, and Euglypha rotunda. As the species most reduced in abundance are all small bacterivores we suggest that our results support the hypothesis of a shift in dominant prokaryotes, although other explanations are possible. Our results demonstrate the sensitivity of peatland microbial communities to sulfate deposition and suggest sulfate may be a potentially important secondary control on testate amoebae communities

    Testate amoeba response to acid deposition in a Scottish peatland

    Get PDF
    Peatlands around the world are exposed to anthropogenic or volcanogenic sulphur pollution. Impacts on peatland microbial communities have been inferred from changes in gas flux but have rarely been directly studied. In this study, the impacts of sulphuric acid deposition on peatland testate amoebae were investigated by analysis of experimental plots on a Scottish peatland almost 7 years after acid treatment. Results showed reduced concentration of live amoebae and changes in community structure which remained significant even when differences in pH were accounted for. Several possible explanations for the impacts can be proposed including taphonomic processes and changes in plant communities. Previous studies have inferred a shift from methanogenic archaea to sulphate-reducing bacteria in sulphate-treated peats; it is possible that the impacts detected here might relate to this change, perhaps through testate amoeba predation on methanotrophs

    A Customer Perspective on Product Eliminations: How the Removal of Products Affects Customers and Business Relationships

    Full text link
    Regardless of the apparent need for product eliminations, many managers hesitate to act as they fear deleterious effects on customer satisfaction and loyalty. Other managers do carry out product eliminations, but often fail to consider the consequences for customers and business relationships. Given the relevance and problems of product eliminations, research on this topic in general and on the consequences for customers and business relationships in particular is surprisingly scarce. Therefore, this empirical study explores how and to what extent the elimination of a product negatively affects customers and business relationships. Results indicate that eliminating a product may result in severe economic and psychological costs to customers, thereby seriously decreasing customer satisfaction and loyalty. This paper also shows that these costs are not exogenous in nature. Instead, depending on the characteristics of the eliminated product these costs are found to be more or less strongly driven by a company’s behavior when implementing the elimination at the customer interface

    Review: The increasing importance of carbon nanotubes and nanostructured conducting polymers in biosensors

    Get PDF
    The growing need for analytical devices requiring smaller sample volumes, decreased power consumption and improved performance have been driving forces behind the rapid growth in nanomaterials research. Due to their dimensions, nanostructured materials display unique properties not traditionally observed in bulk materials. Characteristics such as increased surface area along with enhanced electrical/optical properties make them suitable for numerous applications such as nanoelectronics, photovoltaics and chemical/biological sensing. In this review we examine the potential that exists to use nanostructured materials for biosensor devices. By incorporating nanomaterials, it is possible to achieve enhanced sensitivity, improved response time and smaller size. Here we report some of the success that has been achieved in this area. Many nanoparticle and nanofibre geometries are particularly relevant, but in this paper we specifically focus on organic nanostructures, reviewing conducting polymer nanostructures and carbon nanotubes

    Chondroitin sulfates and their binding molecules in the central nervous system

    Get PDF
    Chondroitin sulfate (CS) is the most abundant glycosaminoglycan (GAG) in the central nervous system (CNS) matrix. Its sulfation and epimerization patterns give rise to different forms of CS, which enables it to interact specifically and with a significant affinity with various signalling molecules in the matrix including growth factors, receptors and guidance molecules. These interactions control numerous biological and pathological processes, during development and in adulthood. In this review, we describe the specific interactions of different families of proteins involved in various physiological and cognitive mechanisms with CSs in CNS matrix. A better understanding of these interactions could promote a development of inhibitors to treat neurodegenerative diseases
    corecore