9 research outputs found

    Learning Through Serving: Why University-Community Collaboration is an Educational Imperative

    Get PDF
    The objectives of this presentation were to: (1) understand how universities impact communities; (2) discuss importance of university-community collaboration; (3) review best practices for university-community collaboration; (4) explore ways to positively impact communities through university-community collaboration; and (5) learn ways to combine academic and professional goals through civic engagement

    A vasopressin/oxytocin-related conopeptide with γ-carboxyglutamate at position 8

    No full text
    Vasopressins and oxytocins are homologous, ubiquitous and multifunctional peptides present in animals. Conopressins are vasopressin/oxytocin-related peptides that have been found in the venom of cone snails, a genus of marine predatory molluscs that envenom their prey with a complex mixture of neuroactive peptides. In the present paper, we report the purification and characterization of a unique conopressin isolated from the venom of Conus villepinii, a vermivorous cone snail species from the western Atlantic Ocean. This novel peptide, designated γ-conopressin-vil, has the sequence CLIQDCPγG* (γ is γ-carboxyglutamate and * is C-terminal amidation). The unique feature of this vasopressin/oxytocin-like peptide is that the eighth residue is γ-carboxyglutamate instead of a neutral or basic residue; therefore it could not be directly classified into either the vasopressin or the oxytocin peptide families. Nano-NMR spectroscopy of the peptide isolated directly from the cone snails revealed that the native γ-conopressin-vil undergoes structural changes in the presence of calcium. This suggests that the peptide binds calcium, and the calcium-binding process is mediated by the γ-carboxyglutamate residue. However, the negatively charged residues in the sequence of γ-conopressin-vil may mediate calcium binding by a novel mechanism not observed in other peptides of this family

    SOCS2 regulates T helper type 2 differentiation and the generation of type 2 allergic responses

    Get PDF
    The incidence of allergy and asthma in developed countries is on the increase and this trend looks likely to continue. CD4(+) T helper 2 (Th2) cells are major drivers of these diseases and their commitment is controlled by cytokines such as interleukin 4, which are in turn regulated by the suppressor of cytokine signaling (SOCS) proteins. We report that SOCS2(-/-) CD4(+) T cells show markedly enhanced Th2 differentiation. SOCS2(-/-) mice, as well as RAG1(-/-) mice transferred with SOCS2(-/-) CD4(+) T cells, exhibit elevated type 2 responses after helminth antigen challenge. Moreover, in in vivo models of atopic dermatitis and allergen-induced airway inflammation, SOCS2(-/-) mice show significantly elevated IgE, eosinophilia, type 2 responses, and inflammatory pathology relative to wild-type mice. Finally, after T cell activation, markedly enhanced STAT6 and STAT5 phosphorylation is observed in SOCS2(-/-) T cells, whereas STAT3 phosphorylation is blunted. Thus, we provide the first evidence that SOCS2 plays an important role in regulating Th2 cell expansion and development of the type 2 allergic responses

    Alternatively activated microglia and macrophages in the central nervous system

    No full text
    corecore