5,918 research outputs found

    Why Do Shoppers Use Cash? Evidence from Shopping Diary Data

    Get PDF
    Recent studies find that cash remains a dominant payment choice for small-value transactions despite the prevalence of alternative methods of payment such as debit and credit cards. For policy makers an important question is whether consumers truly prefer using cash or merchants restrict card usage. Using unique shopping diary data, we estimate a payment choice model with individual unobserved heterogeneity (demandside factors) while controlling for merchants’ acceptance of cards (supply-side factors). Based on a policy simulation where we impose universal card acceptance among merchants, we find that overall cash usage would decrease by only 7.7 percentage points, implying that cash usage in small-value transactions is driven mainly by consumers’ preferences

    A photon-photon quantum gate based on a single atom in an optical resonator

    Full text link
    Two photons in free space pass each other undisturbed. This is ideal for the faithful transmission of information, but prohibits an interaction between the photons as required for a plethora of applications in optical quantum information processing. The long-standing challenge here is to realise a deterministic photon-photon gate. This requires an interaction so strong that the two photons can shift each others phase by pi. For polarisation qubits, this amounts to the conditional flipping of one photon's polarisation to an orthogonal state. So far, only probabilistic gates based on linear optics and photon detectors could be realised, as "no known or foreseen material has an optical nonlinearity strong enough to implement this conditional phase shift..." [Science 318, 1567]. Meanwhile, tremendous progress in the development of quantum-nonlinear systems has opened up new possibilities for single-photon experiments. Platforms range from Rydberg blockade in atomic ensembles to single-atom cavity quantum electrodynamics. Applications like single-photon switches and transistors, two-photon gateways, nondestructive photon detectors, photon routers and nonlinear phase shifters have been demonstrated, but none of them with the ultimate information carriers, optical qubits. Here we employ the strong light-matter coupling provided by a single atom in a high-finesse optical resonator to realise the Duan-Kimble protocol of a universal controlled phase flip (CPF, pi phase shift) photon-photon quantum gate. We achieve an average gate fidelity of F=(76.2+/-3.6)% and specifically demonstrate the capability of conditional polarisation flipping as well as entanglement generation between independent input photons. Our gate could readily perform most of the hitherto existing two-photon operations. It also discloses avenues towards new quantum information processing applications where photons are essential.Comment: 7 pages, 5 figure

    Photon-Mediated Quantum Gate between Two Trapped Neutral Atoms in an Optical Cavity

    Full text link
    Quantum logic gates are fundamental building blocks of quantum computers. Their integration into quantum networks requires strong qubit coupling to network channels, as can be realized with neutral atoms and optical photons in cavity quantum electrodynamics. Here we demonstrate that the long-range interaction mediated by a flying photon performs a gate between two stationary atoms inside an optical cavity from which the photon is reflected. This single step executes the gate in 2μs2\,\mathrm{\mu s}. We show an entangling operation between the two atoms by generating a Bell state with 76(2)% fidelity. The gate also operates as a CNOT. We demonstrate 74.1(1.6)% overlap between the observed and the ideal gate output, limited by the state preparation fidelity of 80.2(0.8)%. As the atoms are efficiently connected to a photonic channel, our gate paves the way towards quantum networking with multiqubit nodes and the distribution of entanglement in repeater-based long-distance quantum networks.Comment: 10 pages including appendix, 5 figure

    Cavity Carving of Atomic Bell States

    Full text link
    We demonstrate entanglement generation of two neutral atoms trapped inside an optical cavity. Entanglement is created from initially separable two-atom states through carving with weak photon pulses reflected from the cavity. A polarization rotation of the photons heralds the entanglement. We show the successful implementation of two different protocols and the generation of all four Bell states with a maximum fidelity of (90+-2)%. The protocol works for any distance between cavity-coupled atoms, and no individual addressing is required. Our result constitutes an important step towards applications in quantum networks, e.g. for entanglement swapping in a quantum repeater.Comment: 9 pages, 7 figures including Supplemen

    Photon-Mediated Quantum Information Processing with Neutral Atoms in an Optical Cavity

    No full text
    corecore