519 research outputs found
The potential for sand dams to increase the adaptive capacity of East African drylands to climate change
Drylands are home to more than two billion people and are characterised by frequent, severe droughts. Such extreme events are expected to be exacerbated in the near future by climate change. A potentially simple and cost-effective mitigation measure against drought periods is sand dams. This little-known technology aims to promote subsoil rainwater storage to support dryland agro-ecosystems. To date, there is little long-term empirical analysis that tests the effectiveness of this approach during droughts. This study addresses this shortcoming by utilising multi-year satellite imagery to monitor the effect of droughts at sand dam locations. A time series of satellite images was analysed to compare vegetation at sand dam sites and control sites over selected periods of drought, using the normalised difference vegetation index. The results show that vegetation biomass was consistently and significantly higher at sand dam sites during periods of extended droughts. It is also shown that vegetation at sand dam sites recovers more quickly from drought. The observed findings corroborate modelling-based research which identified related impacts on ground water, land cover, and socio-economic indicators. Using past periods of drought as an analogue to future climate change conditions, this study indicates that sand dams have potential to increase adaptive capacity and resilience to climate change in drylands. It therefore can be concluded that sand dams enhance the resilience of marginal environments and increase the adaptive capacity of drylands. Sand dams can therefore be a promising adaptation response to the impacts of future climate change on drylands
Quantifying the Stacking Registry Matching in Layered Materials
A detailed account of a recently developed method [Marom et al., Phys. Rev.
Lett. 105, 046801 (2010)] to quantify the registry mismatch in layered
materials is presented. The registry index, which was originally defined for
planar hexagonal boron-nitride, is extended to treat graphitic systems and
generalized to describe multi-layered nanotubes. It is shown that using simple
geometric considerations it is possible to capture the complex physical
features of interlayer sliding in layered materials. The intuitive nature of
the presented model and the efficiency of the related computations suggest that
the method can be used as a powerful characterization tool for interlayer
interactions in complex layered systems.Comment: 8 pages, 8 figures. To be published in a special issue of the Israel
Journal of Chemistry regarding "Inorganic Nanotubes and Nanostructures
Measurement of the B0 anti-B0 oscillation frequency using l- D*+ pairs and lepton flavor tags
The oscillation frequency Delta-md of B0 anti-B0 mixing is measured using the
partially reconstructed semileptonic decay anti-B0 -> l- nubar D*+ X. The data
sample was collected with the CDF detector at the Fermilab Tevatron collider
during 1992 - 1995 by triggering on the existence of two lepton candidates in
an event, and corresponds to about 110 pb-1 of pbar p collisions at sqrt(s) =
1.8 TeV. We estimate the proper decay time of the anti-B0 meson from the
measured decay length and reconstructed momentum of the l- D*+ system. The
charge of the lepton in the final state identifies the flavor of the anti-B0
meson at its decay. The second lepton in the event is used to infer the flavor
of the anti-B0 meson at production. We measure the oscillation frequency to be
Delta-md = 0.516 +/- 0.099 +0.029 -0.035 ps-1, where the first uncertainty is
statistical and the second is systematic.Comment: 30 pages, 7 figures. Submitted to Physical Review
Dispelling urban myths about default uncertainty factors in chemical risk assessment - Sufficient protection against mixture effects?
© 2013 Martin et al.; licensee BioMed Central LtdThis article has been made available through the Brunel Open Access Publishing Fund.Assessing the detrimental health effects of chemicals requires the extrapolation of experimental data in animals to human populations. This is achieved by applying a default uncertainty factor of 100 to doses not found to be associated with observable effects in laboratory animals. It is commonly assumed that the toxicokinetic and toxicodynamic sub-components of this default uncertainty factor represent worst-case scenarios and that the multiplication of those components yields conservative estimates of safe levels for humans. It is sometimes claimed that this conservatism also offers adequate protection from mixture effects. By analysing the evolution of uncertainty factors from a historical perspective, we expose that the default factor and its sub-components are intended to represent adequate rather than worst-case scenarios. The intention of using assessment factors for mixture effects was abandoned thirty years ago. It is also often ignored that the conservatism (or otherwise) of uncertainty factors can only be considered in relation to a defined level of protection. A protection equivalent to an effect magnitude of 0.001-0.0001% over background incidence is generally considered acceptable. However, it is impossible to say whether this level of protection is in fact realised with the tolerable doses that are derived by employing uncertainty factors. Accordingly, it is difficult to assess whether uncertainty factors overestimate or underestimate the sensitivity differences in human populations. It is also often not appreciated that the outcome of probabilistic approaches to the multiplication of sub-factors is dependent on the choice of probability distributions. Therefore, the idea that default uncertainty factors are overly conservative worst-case scenarios which can account both for the lack of statistical power in animal experiments and protect against potential mixture effects is ill-founded. We contend that precautionary regulation should provide an incentive to generate better data and recommend adopting a pragmatic, but scientifically better founded approach to mixture risk assessment. © 2013 Martin et al.; licensee BioMed Central Ltd.Oak Foundatio
Systems-pharmacology dissection of a drug synergy in imatinib-resistant CML
Occurrence of the BCR-ABL[superscript T315I] gatekeeper mutation is among the most pressing challenges in the therapy of chronic myeloid leukemia (CML). Several BCR-ABL inhibitors have multiple targets and pleiotropic effects that could be exploited for their synergistic potential. Testing combinations of such kinase inhibitors identified a strong synergy between danusertib and bosutinib that exclusively affected CML cells harboring BCR-ABL[superscript T315I]. To elucidate the underlying mechanisms, we applied a systems-level approach comprising phosphoproteomics, transcriptomics and chemical proteomics. Data integration revealed that both compounds targeted Mapk pathways downstream of BCR-ABL, resulting in impaired activity of c-Myc. Using pharmacological validation, we assessed that the relative contributions of danusertib and bosutinib could be mimicked individually by Mapk inhibitors and collectively by downregulation of c-Myc through Brd4 inhibition. Thus, integration of genome- and proteome-wide technologies enabled the elucidation of the mechanism by which a new drug synergy targets the dependency of BCR-ABL[superscript T315I] CML cells on c-Myc through nonobvious off targets
Study of hadronic event-shape variables in multijet final states in pp collisions at √s=7 TeV
Peer reviewe
Constraints on parton distribution functions and extraction of the strong coupling constant from the inclusive jet cross section in pp collisions at √s=7 TeV
Peer reviewe
New genetic loci link adipose and insulin biology to body fat distribution.
Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms
Declining recurrence among ductal carcinoma in situ patients treated with breast-conserving surgery in the community setting
Introduction: Randomized trials indicate that adjuvant radiotherapy plus tamoxifen decrease the five-year risk of recurrence among ductal carcinoma in situ patients treated with breast-conserving surgery from about 20% to 8%. The aims of this study were to examine the use and impact of these therapies on risk of recurrence among ductal carcinoma in situ patients diagnosed and treated in the community setting. Methods: We identified 2,995 patients diagnosed with ductal carcinoma in situ between 1990 and 2001 and treated with breast-conserving surgery at three large health plans. Medical charts were reviewed to confirm diagnosis and treatment and to obtain information on subsequent breast cancers. On a subset of patients, slides from the index ductal carcinoma in situ were reviewed for histopathologic features. Cumulative incidence curves were generated and Cox regression was used to examine changes in five-year risk of recurrence across diagnosis years, with and without adjusting for trends in use of adjuvant therapies. Results: Use of radiotherapy increased from 25.8% in 1990-1991 to 61.3% in 2000-2001; tamoxifen increased from 2.3% to 34.4%. A total of 245 patients had a local recurrence within five years of their index ductal carcinoma in situ. The five-year risk of any local recurrence decreased from 14.3% (95% confidence interval 9.8 to 18.7) for patients diagnosed in 1990-1991 to 7.7% (95% confidence interval 5.5 to 9.9) for patients diagnosed in 1998-1999; invasive recurrence decreased from 7.0% (95% confidence interval 3.8 to 10.3) to 3.1% (95% confidence interval 1.7 to 4.6). In Cox models, the association between diagnosis year and risk of recurrence was modestly attenuated after accounting for use of adjuvant therapy. Between 1990-1991 and 2000-2001, the proportion of patients with tumors with high nuclear grade decreased from 46% to 32% (P = 0.03) and those with involved surgical margins dropped from 15% to 0% (P = 0.03). Conclusions: The marked increase in the 1990s in the use of adjuvant therapy for ductal carcinoma in situ patients treated with breast-conserving surgery in the community setting only partially explains the 50% decline in risk of recurrence. Changes in pathology factors have likely also contributed to this decline
- …
