9 research outputs found

    Creating context for the use of DNA adduct data in cancer risk assessment: II. Overview of methods of identification and quantitation of DNA damage

    No full text
    The formation of deoxyribonucleic acid (DNA) adducts can have important and adverse consequences for cellular and whole organism function. Available methods for identification of DNA damage and quantification of adducts are reviewed. Analyses can be performed on various samples including tissues, isolated cells, and intact or hydrolyzed (digested) DNA from a variety of biological samples of interest for monitoring in humans. Sensitivity and specificity are considered key factors for selecting the type of method for assessing DNA perturbation. The amount of DNA needed for analysis is dependent upon the method and ranges widely, from 14C- and 3H-) binding, 32P-postlabeling, and methods dependent on gas chromatography (GC) or high-performance liquid chromatography (HPLC) with detection by electron capture, electrochemical detection, single or tandem mass spectrometry, or accelerator mass spectrometry. Sensitivity is ranked, and ranges from ~1 adduct in 104 to 1012 nucleotides. A brief overview of oxidatively generated DNA damage is also presented. Assay limitations are discussed along with issues that may have impact on the reliability of results, such as sample collection, processing, and storage. Although certain methodologies are mature, improving technology will continue to enhance the specificity and sensitivity of adduct analysis. Because limited guidance and recommendations exist for adduct analysis, this effort supports the HESI Committee goal of developing a framework for use of DNA adduct data in risk assessment

    Three distinct ribosome assemblies modulated by translation are the building blocks of polysomes

    No full text
    Translation is increasingly recognized as a central control layer of gene expression in eukaryotic cells. The overall organization of mRNA and ribosomes within polysomes, as well as the possible role of this organization in translation are poorly understood. Here we show that polysomes are primarily formed by three distinct classes of ribosome assemblies. We observe that these assemblies can be connected by naked RNA regions of the transcript. We show that the relative proportions of the three classes of ribosome assemblies reflect, and probably dictate, the level of translational activity. These results reveal the existence of recurrent supra-ribosomal building blocks forming polysomes and suggest the presence of unexplored translational controls embedded in the polysome structure

    Kohlenwasserstoffe. Natürliche Bitumina (Das Erdöl und seine Verwandten)

    No full text

    Bibliographie

    No full text

    Role of Rad51 and DNA repair in cancer: A molecular perspective

    No full text
    corecore