5,827 research outputs found

    Enumeration of self avoiding trails on a square lattice using a transfer matrix technique

    Full text link
    We describe a new algebraic technique, utilising transfer matrices, for enumerating self-avoiding lattice trails on the square lattice. We have enumerated trails to 31 steps, and find increased evidence that trails are in the self-avoiding walk universality class. Assuming that trails behave like Aλnn1132A \lambda ^n n^{11 \over 32}, we find λ=2.72062±0.000006\lambda = 2.72062 \pm 0.000006 and A=1.272±0.002A = 1.272 \pm 0.002.Comment: To be published in J. Phys. A:Math Gen. Pages: 16 Format: RevTe

    Low-Temperature Series for the Correlation Length in d=3d=3 Ising Model

    Get PDF
    We extend low-temperature series for the second moment of the correlation function in d=3d=3 simple-cubic Ising model from u15u^{15} to u26u^{26} using finite-lattice method, and combining with the series for the susceptibility we obtain the low-temperature series for the second-moment correlation length to u23u^{23}. An analysis of the obtained series by inhomogeneous differential approximants gives critical exponents 2ν+γ2.55 2\nu^{\prime} + \gamma^{\prime} \approx 2.55 and 2ν1.27 2\nu^{\prime} \approx 1.27 .Comment: 13 pages + 5 uuencoded epsf figures in Latex, OPCT-94-

    Polyominoes with nearly convex columns: An undirected model

    Get PDF
    Column-convex polyominoes were introduced in 1950's by Temperley, a mathematical physicist working on "lattice gases". By now, column-convex polyominoes are a popular and well-understood model. There exist several generalizations of column-convex polyominoes; an example is a model called multi-directed animals. In this paper, we introduce a new sequence of supersets of column-convex polyominoes. Our model (we call it level m column-subconvex polyominoes) is defined in a simple way. We focus on the case when cells are hexagons and we compute the area generating functions for the levels one and two. Both of those generating functions are complicated q-series, whereas the area generating function of column-convex polyominoes is a rational function. The growth constants of level one and level two column-subconvex polyominoes are 4.319139 and 4.509480, respectively. For comparison, the growth constants of column-convex polyominoes, multi-directed animals and all polyominoes are 3.863131, 4.587894 and 5.183148, respectively.Comment: 26 pages, 14 figure

    Fuchsian differential equation for the perimeter generating function of three-choice polygons

    Get PDF
    Using a simple transfer matrix approach we have derived very long series expansions for the perimeter generating function of three-choice polygons. We find that all the terms in the generating function can be reproduced from a linear Fuchsian differential equation of order 8. We perform an analysis of the properties of the differential equation.Comment: 13 pages, 2 figures, talk presented in honour of X. Viennot at Seminaire Lotharengien, Lucelle, France, April 3-6 2005. Paper amended and sligtly expanded after refereein
    corecore