131 research outputs found

    Energy dependence of J/ψJ/\psi production in pp collisions with the PACIAE model

    Full text link
    In this work we investigate the J/ψJ/\psi production in proton-proton collisions at the center-of-mass energy (s\sqrt{s}) equal to 2.76, 5.02, 7, 8 and 13 TeV with a parton and hadron cascade model PACIAE 2.2a. It is based on PYTHIA but extended considering the partonic and hadronic rescatterings before and after hadronization, respectively. In the PYTHIA sector the J/ψJ/\psi production quantum chromodynamics processes are selected specially and a bias factor is proposed correspondingly. The calculated total cross sections, the differential cross sections as a function of the transverse momentum and the rapidity of J/ψJ/\psi in the forward rapidity region reproduce the corresponding experimental measurements reasonably well. In the mid-rapidity region, the double differential cross sections at s=\sqrt{s}= 5.02, 7 and 13 TeV are also in a good agreement with the experimental data. Moreover, we predict the double differential cross section as well as the total cross section of J/ψJ/\psi at s=\sqrt{s}= 8 TeV, which could be validated when the experimental data is available.Comment: 6 pages, 8 figures, 3 table

    Two-fold symmetric superconductivity in the kagome superconductor RbV3Sb5

    Full text link
    The recent discovered kagome superconductors provide a good platform for studying intertwined orders and novel states such as topology, superconductor, charge density wave, et al. The interplay of these orders may spontaneously break the rotational symmetry, and induce exotic phenomena such as nematicity, or even nematic superconductor. Here we report a two-fold rotational symmetric superconductivity of thin-film RbV3Sb5 in response to a direction-dependent in-plane magnetic fields, in contrast to the six-fold structural symmetry of the crystal lattice. The two-fold symmetry was evidenced by the magnetoresistance transport experiments, critical magnetic field measurements and the anisotropic superconducting gap. With different configuration, we further observed the six-fold symmetry superimposed on the two-fold symmetry near the boundary between normal states and superconducting states. Our results present the correlation-driven symmetry breaking and highlight the promising platform to study the intertwined orders such as unconventional superconductivity in this correlated kagome family

    Proton-Boron Fusion Yield Increased by Orders of Magnitude with Foam Targets

    Full text link
    A novel intense beam-driven scheme for high yield of the tri-alpha reaction 11B(p,{\alpha})2{\alpha} was investigated. We used a foam target made of cellulose triacetate (TAC, C_9H_{16}O_8) doped with boron. It was then heated volumetrically by soft X-ray radiation from a laser heated hohlraum and turned into a homogenous, and long living plasma. We employed a picosecond laser pulse to generate a high-intensity energetic proton beam via the well-known Target Normal Sheath Acceleration (TNSA) mechanism. We observed up to 10^{10}/sr {\alpha} particles per laser shot. This constitutes presently the highest yield value normalized to the laser energy on target. The measured fusion yield per proton exceeds the classical expectation of beam-target reactions by up to four orders of magnitude under high proton intensities. This enhancement is attributed to the strong electric fields and nonequilibrium thermonuclear fusion reactions as a result of the new method. Our approach shows opportunities to pursue ignition of aneutronic fusion

    Persistent Hepatitis B Viral Replication in a FVB/N Mouse Model: Impact of Host and Viral Factors

    Get PDF
    The mechanism underlying the chronicity of hepatitis B virus (HBV) infection has long been an interesting question. However, this mechanism remains unclear largely due to the lack of an animal model that can support persistent HBV replication and allow for the investigation of the relevant immune responses. In this study, we used hydrodynamic injection to introduce HBV replicon DNA into the livers of three different mouse strains: BALB/c, C57BL/6, and FVB/N. Interestingly, we found that an HBV clone persistently replicated in the livers of FVB/N mice for up to 50 weeks but was rapidly cleared from the livers of BALB/c and C57BL/6 mice. Flow cytometric analysis and quantitative reverse transcription PCR analysis of the mouse livers indicated that after DNA injection, FVB/N mice had few intrahepatic activated cytotoxic T lymphocytes (CTLs) and produced low levels of alanine aminotransferase, interferon (IFN)-γ, tumor necrosis factor (TNF)-α, and the CXCL9 and CXCL10 chemokines. These findings were in sharp contrast with those observed in BALB/c and C57BL/6 mice, reflecting a strong correlation between the degree of liver inflammation and viral clearance. Mutational analysis further demonstrated that a change of Asn-214 to Ser-214 in the HBV surface antigen rendered the persistent HBV clone clearable in FVB/N mice, which was accompanied by increased levels of activated CTL and upregulated expression of IFN-γ, CXCL9, and CXCL10 in the livers. These results indicate that the heterogeneity of the host factors and viral sequences may influence the immune responses against HBV. An inadequate activation of immune or inflammatory responses can lead to persistent HBV replication in vivo

    Advances in Molecular Quantum Chemistry Contained in the Q-Chem 4 Program Package

    Get PDF
    A summary of the technical advances that are incorporated in the fourth major release of the Q-Chem quantum chemistry program is provided, covering approximately the last seven years. These include developments in density functional theory methods and algorithms, nuclear magnetic resonance (NMR) property evaluation, coupled cluster and perturbation theories, methods for electronically excited and open-shell species, tools for treating extended environments, algorithms for walking on potential surfaces, analysis tools, energy and electron transfer modelling, parallel computing capabilities, and graphical user interfaces. In addition, a selection of example case studies that illustrate these capabilities is given. These include extensive benchmarks of the comparative accuracy of modern density functionals for bonded and non-bonded interactions, tests of attenuated second order Møller–Plesset (MP2) methods for intermolecular interactions, a variety of parallel performance benchmarks, and tests of the accuracy of implicit solvation models. Some specific chemical examples include calculations on the strongly correlated Cr2 dimer, exploring zeolite-catalysed ethane dehydrogenation, energy decomposition analysis of a charged ter-molecular complex arising from glycerol photoionisation, and natural transition orbitals for a Frenkel exciton state in a nine-unit model of a self-assembling nanotube

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
    corecore