125 research outputs found

    Modelling dynamics of social support networks for mutual support in coping with stress

    Get PDF
    This paper presents a computational multi-agent model of support receipt and provision to cope during stressful event within social support networks.The underlying agent model covers support seeking behavior and support provision behaviour. The multi-agent model can be used to understand human interaction and social support within networks, when facing stress.Simulation experiments under different negative events and personality attributes for both support receipt and provision pointed out that the model is able to produce realistic behavior to explain conditions for coping with long term stress by provided mutual support.In addition, by a mathematical analysis, the possible equilibria of the model have been determined

    Genome-wide differentiation in closely related populations: the roles of selection and geographic isolation.

    Get PDF
    Population divergence in geographic isolation is due to a combination of factors. Natural and sexual selection may be important in shaping patterns of population differentiation, a pattern referred to as 'Isolation by Adaptation' (IBA). IBA can be complementary to the well-known pattern of 'Isolation by Distance' (IBD), in which the divergence of closely related populations (via any evolutionary process) is associated with geographic isolation. The barn swallow Hirundo rustica complex comprises six closely related subspecies, where divergent sexual selection is associated with phenotypic differentiation among allopatric populations. To investigate the relative contributions of selection and geographic distance to genome-wide differentiation, we compared genotypic and phenotypic variation from 350 barn swallows sampled across eight populations (28 pairwise comparisons) from four different subspecies. We report a draft whole genome sequence for H. rustica, to which we aligned a set of 9,493 single nucleotide polymorphisms (SNPs). Using statistical approaches to control for spatial autocorrelation of phenotypic variables and geographic distance, we find that divergence in traits related to migratory behavior and sexual signaling, as well as geographic distance together, explain over 70% of genome-wide divergence among populations. Controlling for IBD, we find 42% of genome-wide divergence is attributable to IBA through pairwise differences in traits related to migratory behavior and sexual signaling alone. By (i) combining these results with prior studies of how selection shapes morphological differentiation and (ii) accounting for spatial autocorrelation, we infer that morphological adaptation plays a large role in shaping population-level differentiation in this group of closely related populations. This article is protected by copyright. All rights reserved

    Modified Gravity: the CMB, Weak Lensing and General Parameterisations

    Full text link
    We examine general physical parameterisations for viable gravitational models in the f(R)f(R) framework. This is related to the mass of an additional scalar field, called the scalaron, that is introduced by the theories. Using a simple parameterisation for the scalaron mass M(a)M(a) we show there is an exact correspondence between the model and popular parameterisations of the modified Poisson equation μ(a,k)\mu(a,k) and the ratio of the Newtonian potentials η(a,k)\eta(a,k). However, by comparing the aforementioned model against other viable scalaron theories we highlight that the common form of μ(a,k)\mu(a,k) and η(a,k)\eta(a,k) in the literature does not accurately represent f(R)f(R) behaviour. We subsequently construct an improved description for the scalaron mass (and therefore μ(a,k)\mu(a,k) and η(a,k)\eta(a,k)) which captures their essential features and has benefits derived from a more physical origin. We study the scalaron's observational signatures and show the modification to the background Friedmann equation and CMB power spectrum to be small. We also investigate its effects in the linear and non linear matter power spectrum--where the signatures are evident--thus giving particular importance to weak lensing as a probe of these models. Using this new form, we demonstrate how the next generation Euclid survey will constrain these theories and its complementarity to current solar system tests. In the most optimistic case Euclid, together with a Planck prior, can constrain a fiducial scalaron mass M0=9.4×1030eVM_{0} = 9.4 \times 10^{-30}{\rm eV} at the 20\sim 20 % level. However, the decay rate of the scalaron mass, with fiducial value ν=1.5\nu = 1.5, can be constrained to 3\sim 3% uncertainty

    Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration

    Full text link
    Extensive experimental data from high-energy nucleus-nucleus collisions were recorded using the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC). The comprehensive set of measurements from the first three years of RHIC operation includes charged particle multiplicities, transverse energy, yield ratios and spectra of identified hadrons in a wide range of transverse momenta (p_T), elliptic flow, two-particle correlations, non-statistical fluctuations, and suppression of particle production at high p_T. The results are examined with an emphasis on implications for the formation of a new state of dense matter. We find that the state of matter created at RHIC cannot be described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted to Nuclear Physics A as a regular article; v3 has minor changes in response to referee comments. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Search for charginos in e+e- interactions at sqrt(s) = 189 GeV

    Full text link
    An update of the searches for charginos and gravitinos is presented, based on a data sample corresponding to the 158 pb^{-1} recorded by the DELPHI detector in 1998, at a centre-of-mass energy of 189 GeV. No evidence for a signal was found. The lower mass limits are 4-5 GeV/c^2 higher than those obtained at a centre-of-mass energy of 183 GeV. The (\mu,M_2) MSSM domain excluded by combining the chargino searches with neutralino searches at the Z resonance implies a limit on the mass of the lightest neutralino which, for a heavy sneutrino, is constrained to be above 31.0 GeV/c^2 for tan(beta) \geq 1.Comment: 22 pages, 8 figure

    Hadronization properties of b quarks compared to light quarks in e+e- -> q qbar from 183 to 200 GeV

    Full text link
    The DELPHI detector at LEP has collected 54 pb^{-1} of data at a centre-of-mass energy around 183 GeV during 1997, 158 pb^{-1} around 189 GeV during 1998, and 187 pb^{-1} between 192 and 200 GeV during 1999. These data were used to measure the average charged particle multiplicity in e+e- -> b bbar events, _{bb}, and the difference delta_{bl} between _{bb} and the multiplicity, _{ll}, in generic light quark (u,d,s) events: delta_{bl}(183 GeV) = 4.55 +/- 1.31 (stat) +/- 0.73 (syst) delta_{bl}(189 GeV) = 4.43 +/- 0.85 (stat) +/- 0.61 (syst) delta_{bl}(200 GeV) = 3.39 +/- 0.89 (stat) +/- 1.01 (syst). This result is consistent with QCD predictions, while it is inconsistent with calculations assuming that the multiplicity accompanying the decay of a heavy quark is independent of the mass of the quark itself.Comment: 13 pages, 2 figure

    The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape : A Large-Scale Genome-Wide Interaction Study

    Get PDF
    Genome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ substantially between men and women. To systematically screen for age-and/or sex-specific effects of genetic variants on BMI and WHRadjBMI, we performed meta-analyses of 114 studies (up to 320,485 individuals of European descent) with genome-wide chip and/or Metabochip data by the Genetic Investigation of Anthropometric Traits (GIANT) Consortium. Each study tested the association of up to similar to 2.8M SNPs with BMI and WHRadjBMI in four strata (men 50y, women 50y) and summary statistics were combined in stratum-specific meta-analyses. We then screened for variants that showed age-specific effects (G x AGE), sex-specific effects (G x SEX) or age-specific effects that differed between men and women (G x AGE x SEX). For BMI, we identified 15 loci (11 previously established for main effects, four novel) that showed significant (FDR= 50y). No sex-dependent effects were identified for BMI. For WHRadjBMI, we identified 44 loci (27 previously established for main effects, 17 novel) with sex-specific effects, of which 28 showed larger effects in women than in men, five showed larger effects in men than in women, and 11 showed opposite effects between sexes. No age-dependent effects were identified for WHRadjBMI. This is the first genome-wide interaction meta-analysis to report convincing evidence of age-dependent genetic effects on BMI. In addition, we confirm the sex-specificity of genetic effects on WHRadjBMI. These results may providefurther insights into the biology that underlies weight change with age or the sexually dimorphism of body shape.Peer reviewe
    corecore