87 research outputs found
Three-phase nitrobenzene hydrogenation over supported glass fiber catalysts: reaction kinetics study
The catalytic properties of Pd and Pt supported on woven glass fibers (GF) were investigated in the three-phase hydrogenation of nitrobenzene (NB). Over all catalysts, a 100% yield of aniline was attained. The catalytic activity for the best catalysts was two times higher than the activity of com. Pt/C catalyst traditionally used for liq.-phase hydrogenation. The intrinsic reaction kinetics were studied and a reaction scheme is suggested. The direct formation of aniline from NB was obsd. over Pd/GF with traces of intermediates. Four intermediate products were detected during aniline formation over Pt/GF: nitrosobenzene, phenylhydroxylamine, azoxybenzene, and azobenzene. The Eley-Rideal kinetic model fits the exptl. data well. The parameters of the model were detd. as a function of initial NB concn. and hydrogen pressure. Pt and Pd supported on GF in woven fabrics are suggested as suitable materials for reactors with a structured catalytic bed in multiphase reactor performance. [on SciFinder (R)
Time-dependent modeling of pulsar wind nebulae: Study on the impact of the diffusion-loss approximations
In this work, we present a leptonic, time-dependent model of pulsar wind
nebulae (PWNe). The model seeks a solution for the lepton distribution function
considering the full time-energy dependent diffusion-loss equation. The
time-dependent lepton population is balanced by injection, energy losses, and
escape. We include synchrotron, inverse Compton (IC, with the cosmic-microwave
background as well as with IR/optical photon fields), self-synchrotron Compton
(SSC), and bremsstrahlung processes, all devoid of any radiative
approximations. With this model in place we focus on the Crab nebula as an
example and present its time dependent evolution. Afterwards, we analyze the
impact of different approximations made at the level of the diffusion-loss
equation, as can be found in the literature. Whereas previous models ignored
the escape term, e.g., with the diffusion-loss equation becoming advective,
others approximated the losses as catastrophic, so that the equation has only
time derivatives. Additional approximations are also described and computed. We
show which is the impact of these approaches in the determination of the PWN
evolution. In particular, we find the time-dependent deviation of the
multi-wavelength spectrum and the best-fit parameters obtained with the
complete and the approximate models.Comment: In press in MNRA
Roflumilast in moderate-to-severe chronic obstructive pulmonary disease treated with longacting bronchodilators: two randomised clinical trials
Background Patients with chronic obstructive pulmonary disease (COPD) have few options for treatment. The efficacy and safety of the phosphodiesterase-4 inhibitor roflumilast have been investigated in studies of patients with moderate-to-severe COPD, but not in those concomitantly treated with longacting inhaled bronchodilators. The effect of roflumilast on lung function in patients with COPD that is moderate to severe who are already being treated with salmeterol or tiotropium was investigated. Methods In two double-blind, multicentre studies done in an outpatient setting, after a 4-week run-in, patients older than 40 years with moderate-to-severe COPD were randomly assigned to oral roflumilast 500 mu g or placebo once a day for 24 weeks, in addition to salmeterol (M2-127 study) or tiotropium (M2-128 study). The primary endpoint was change in prebronchodilator forced expiratory volume in 1s (FEV(1)). Analysis was by intention to treat. The studies are registered with ClinicalTrials.gov, number NCT00313209 for M2-127, and NCT00424268 for M2-128. Findings In the salmeterol plus roflumilast trial, 466 patients were assigned to and treated with roflumilast and 467 with placebo; in the tiotropium plus roflumilast trial, 371 patients were assigned to and treated with roflumilast and 372 with placebo. Compared with placebo, roflumilast consistently improved mean prebronchodilator FEV(1) by 49 mL (p<0.0001) in patients treated with salmeterol, and 80 mL (p<0.0001) in those treated with tiotropium. Similar improvement in postbronchodilator FEV(1) was noted in both groups. Furthermore, roflumilast had beneficial effects on other lung function measurements and on selected patient-reported outcomes in both groups. Nausea, diarrhoea, weight loss, and, to a lesser extent, headache were more frequent in patients in the roflumilast groups. These adverse events were associated with increased patient withdrawal. Interpretation Roflumilast improves lung function in patients with COPD treated with salmeterol or tiotropium, and could become an important treatment for these patients
The 2010 very high energy gamma-ray flare & 10 years of multi-wavelength observations of M 87
Abridged: The giant radio galaxy M 87 with its proximity, famous jet, and
very massive black hole provides a unique opportunity to investigate the origin
of very high energy (VHE; E>100 GeV) gamma-ray emission generated in
relativistic outflows and the surroundings of super-massive black holes. M 87
has been established as a VHE gamma-ray emitter since 2006. The VHE gamma-ray
emission displays strong variability on timescales as short as a day. In this
paper, results from a joint VHE monitoring campaign on M 87 by the MAGIC and
VERITAS instruments in 2010 are reported. During the campaign, a flare at VHE
was detected triggering further observations at VHE (H.E.S.S.), X-rays
(Chandra), and radio (43 GHz VLBA). The excellent sampling of the VHE gamma-ray
light curve enables one to derive a precise temporal characterization of the
flare: the single, isolated flare is well described by a two-sided exponential
function with significantly different flux rise and decay times. While the
overall variability pattern of the 2010 flare appears somewhat different from
that of previous VHE flares in 2005 and 2008, they share very similar
timescales (~day), peak fluxes (Phi(>0.35 TeV) ~= (1-3) x 10^-11 ph cm^-2
s^-1), and VHE spectra. 43 GHz VLBA radio observations of the inner jet regions
indicate no enhanced flux in 2010 in contrast to observations in 2008, where an
increase of the radio flux of the innermost core regions coincided with a VHE
flare. On the other hand, Chandra X-ray observations taken ~3 days after the
peak of the VHE gamma-ray emission reveal an enhanced flux from the core. The
long-term (2001-2010) multi-wavelength light curve of M 87, spanning from radio
to VHE and including data from HST, LT, VLA and EVN, is used to further
investigate the origin of the VHE gamma-ray emission. No unique, common MWL
signature of the three VHE flares has been identified.Comment: 19 pages, 5 figures; Corresponding authors: M. Raue, L. Stawarz, D.
Mazin, P. Colin, C. M. Hui, M. Beilicke; Fig. 1 lightcurve data available
online: http://www.desy.de/~mraue/m87
Combined dark matter searches towards dwarf spheroidal galaxies with Fermi-LAT, HAWC, H.E.S.S., MAGIC, and VERITAS
Cosmological and astrophysical observations suggest that 85% of the total matter of the Universe is made of Dark Matter (DM). However, its nature remains one of the most challenging and fundamental open questions of particle physics. Assuming particle DM, this exotic form of matter cannot consist of Standard Model (SM) particles. Many models have been developed to attempt unraveling the nature of DM such as Weakly Interacting Massive Particles (WIMPs), the most favored particle candidates. WIMP annihilations and decay could produce SM particles which in turn hadronize and decay to give SM secondaries such as high energy \u1d6fe rays. In the framework of indirect DM search, observations of promising targets are used to search for signatures of DM annihilation. Among these, the dwarf spheroidal galaxies (dSphs) are commonly favored owing to their expected high DM content and negligible astrophysical background. In this work, we present the very first combination of 20 dSph observations, performed by the Fermi-LAT, HAWC, H.E.S.S., MAGIC, and VERITAS collaborations in order to maximize the sensitivity of DM searches and improve the current results. We use a joint maximum likelihood approach combining each experiment’s individual analysis to derive more constraining upper limits on the WIMP DM self-annihilation cross-section as a function of DM particle mass. We present new DM constraints over the widest mass range ever reported, extending from 5 GeV to 100 TeV thanks to the combination of these five different \u1d6fe-ray instruments
The Science Performance of JWST as Characterized in Commissioning
This paper characterizes the actual science performance of the James Webb
Space Telescope (JWST), as determined from the six month commissioning period.
We summarize the performance of the spacecraft, telescope, science instruments,
and ground system, with an emphasis on differences from pre-launch
expectations. Commissioning has made clear that JWST is fully capable of
achieving the discoveries for which it was built. Moreover, almost across the
board, the science performance of JWST is better than expected; in most cases,
JWST will go deeper faster than expected. The telescope and instrument suite
have demonstrated the sensitivity, stability, image quality, and spectral range
that are necessary to transform our understanding of the cosmos through
observations spanning from near-earth asteroids to the most distant galaxies.Comment: 5th version as accepted to PASP; 31 pages, 18 figures;
https://iopscience.iop.org/article/10.1088/1538-3873/acb29
The Science Performance of JWST as Characterized in Commissioning
This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies
The James Webb Space Telescope Mission
Twenty-six years ago a small committee report, building on earlier studies,
expounded a compelling and poetic vision for the future of astronomy, calling
for an infrared-optimized space telescope with an aperture of at least .
With the support of their governments in the US, Europe, and Canada, 20,000
people realized that vision as the James Webb Space Telescope. A
generation of astronomers will celebrate their accomplishments for the life of
the mission, potentially as long as 20 years, and beyond. This report and the
scientific discoveries that follow are extended thank-you notes to the 20,000
team members. The telescope is working perfectly, with much better image
quality than expected. In this and accompanying papers, we give a brief
history, describe the observatory, outline its objectives and current observing
program, and discuss the inventions and people who made it possible. We cite
detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space
Telescope Overview, 29 pages, 4 figure
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
- …