2,468 research outputs found

    Shocks, Outflows and Bubbles: New Views on Pulsars and their Winds

    Full text link
    A typical young pulsar slows down at an imperceptible rate, its spin period increasing by less than 10 microseconds over the course of a year. However, the inertia of a pulsar is so extreme that to effect this tiny change in rotation rate, the star must dissipate about 10^46 ergs of kinetic energy. Observations of pulsars and their surroundings demonstrate that this ``spin-down energy'' is expelled into the pulsar's surroundings in spectacular fashion, in the form of a relativistic wind of charged particles and magnetic fields. In this review I highlight some recent observational results on pulsar winds at radio, X-ray and optical wavelengths, and explain what we can learn from these data about shock structure, particle acceleration and the interstellar medium.Comment: 8 pages, 4 embedded EPS figures, uses ws-procs9x6.cls. To appear in proceddings of "Texas in Tuscany" (XXI Symposium on Relativistic Astrophysics

    Bow shocks around pulsars and neutron stars

    Full text link
    Pulsar wind nebulae are now well established as important probes both of neutron stars' relativistic winds and of the surrounding interstellar medium. Amongst this diverse group of objects, pulsar bow shocks have long been regarded as an oddity, only seen around a handful of rapidly moving neutron stars. However, recent efforts at optical, radio and X-ray wavelengths have identified many new pulsar bow shocks, and these results have consequently motivated renewed theoretical efforts to model these systems. Here I review the new results and ideas which have emerged on these spectacular systems, and explain how bow shocks and "Crab-like" nebulae now form a consistent picture within our understanding of pulsar winds.Comment: 12 pages, 2 embedded EPS figures, 1 GIF figure. Advances in Space Research, in pres

    Cosmic Magnetism with the Square Kilometre Array and its Pathfinders

    Full text link
    One of the five key science projects for the Square Kilometre Array (SKA) is "The Origin and Evolution of Cosmic Magnetism", in which radio polarimetry will be used to reveal what cosmic magnets look like and what role they have played in the evolving Universe. Many of the SKA prototypes now being built are also targeting magnetic fields and polarimetry as key science areas. Here I review the prospects for innovative new polarimetry and Faraday rotation experiments with forthcoming facilities such as ASKAP, LOFAR, the ATA, the EVLA, and ultimately the SKA. Sensitive wide-field polarisation surveys with these telescopes will provide a dramatic new view of magnetic fields in the Milky Way, in nearby galaxies and clusters, and in the high-redshift Universe.Comment: 7 pages, including 2 colour figures. To appear in proceedings of IAU Symposium 259: "Cosmic Magnetic Fields: From Planets, To Stars and Galaxies", Tenerife, Nov 200

    Radio continuum and polarization study of SNR G57.2+0.8 associated with magnetar SGR1935+2154

    Full text link
    We present a radio continuum and linear polarization study of the Galactic supernova remnant G57.2+0.8, which may host the recently discovered magnetar SGR1935+2154. The radio SNR shows the typical radio continuum spectrum of a mature supernova remnant with a spectral index of α=−0.55±0.02\alpha = -0.55 \pm 0.02 and moderate polarized intensity. Magnetic field vectors indicate a tangential magnetic field, expected for an evolved SNR, in one part of the SNR and a radial magnetic field in the other. The latter can be explained by an overlapping arc-like feature, perhaps a pulsar wind nebula, emanating from the magnetar. The presence of a pulsar wind nebula is supported by the low average braking index of 1.2, we extrapolated for the magnetar, and the detection of diffuse X-ray emission around it. We found a distance of 12.5 kpc for the SNR, which identifies G57.2+0.8 as a resident of the Outer spiral arm of the Milky Way. The SNR has a radius of about 20 pc and could be as old as 41,000 years. The SNR has already entered the radiative or pressure-driven snowplow phase of its evolution. We compared independently determined characteristics like age and distance for both, the SNR and SGR1935+2154, and conclude that they are physically related.Comment: accepted by The Astrophysical Journal, 16 pages, 10 figure

    A deep search for pulsar wind nebulae using pulsar gating

    Get PDF
    Using the Australia Telescope Compact Array (ATCA) we have imaged the fields around five promising pulsar candidates to search for radio pulsar wind nebulae (PWNe). We have used the ATCA in its pulsar gating mode; this enables an image to be formed containing only off-pulse visibilities, thereby dramatically improving the sensitivity to any underlying PWN. Data from the Molonglo Observatory Synthesis Telescope were also used to provide sensitivity on larger spatial scales. This survey found a faint new PWN around PSR B0906-49; here we report on non-detections of PWNe towards PSRs B1046-58, B1055-52, B1610-50 and J1105-6107. Our radio observations of the field around PSR B1055-52 argue against previous claims of an extended X-ray and radio PWNe associated with the pulsar. If these pulsars power unseen, compact radio PWN, upper limits on the radio flux indicate that less than 1e-6 of their spin-down energy is used to power this emission. Alternatively PSR B1046-58 and PSR B1610-50 may have relativistic winds similar to other young pulsars and the unseen PWN is resolved and fainter than our surface brightness sensitivity threshold. We can then determine upper limits on the local ISM density of 2.2e-3 cm^-3 and 1e-2 cm^-3, respectively. Furthermore we constrain the spatial velocities of these pulsars to be less than ~450 km/s and thus rule out the association of PSR B1610-50 with SNR G332.4+00.1 (Kes 32). Strong limits on the ratio of unpulsed to pulsed emission are also determined for three pulsars.Comment: 10 pages, 5 figures, MNRAS in pres
    • …
    corecore