287 research outputs found

    Selenium isotope evidence for progressive oxidation of the Neoproterozoic biosphere

    Get PDF
    Neoproterozoic (1,000–542 Myr ago) Earth experienced profound environmental change, including ‘snowball’ glaciations, oxygenation and the appearance of animals. However, an integrated understanding of these events remains elusive, partly because proxies that track subtle oceanic or atmospheric redox trends are lacking. Here we utilize selenium (Se) isotopes as a tracer of Earth redox conditions. We find temporal trends towards lower δ82/76Se values in shales before and after all Neoproterozoic glaciations, which we interpret as incomplete reduction of Se oxyanions. Trends suggest that deep-ocean Se oxyanion concentrations increased because of progressive atmospheric and deep-ocean oxidation. Immediately after the Marinoan glaciation, higher δ82/76Se values superpose the general decline. This may indicate less oxic conditions with lower availability of oxyanions or increased bioproductivity along continental margins that captured heavy seawater δ82/76Se into buried organics. Overall, increased ocean oxidation and atmospheric O2 extended over at least 100 million years, setting the stage for early animal evolution

    Mating dynamics in a nematode with three sexes and its evolutionary implications

    Get PDF
    Nematodes have diverse reproductive strategies, which make them ideal subjects for comparative studies to address how mating systems evolve. Here we present the sex ratios and mating dynamics of the free-living nematode Rhabditis sp. SB347, in which males, females and hermaphrodites co-exist. The three sexes are produced by both selfing and outcrossing, and females tend to appear early in a mother’s progeny. Males prefer mating with females over hermaphrodites, which our results suggest is related to the female-specific production of the sex pheromones ascr#1 and ascr#9. We discuss the parallels between this system and that of parasitic nematodes that exhibit alternation between uniparental and biparental reproduction

    Genomic analysis of Sparus aurata reveals the evolutionary dynamics of sex-biased genes in a sequential hermaphrodite fish

    Get PDF
    Sexual dimorphism is a fascinating subject in evolutionary biology and mostly results from sex-biased expression of genes, which have been shown to evolve faster in gonochoristic species. We report here genome and sex-specific transcriptome sequencing of Sparus aurata, a sequential hermaphrodite fish. Evolutionary comparative analysis reveals that sex-biased genes in S. aurata are similar in number and function, but evolved following strikingly divergent patterns compared with gonochoristic species, showing overall slower rates because of stronger functional constraints. Fast evolution is observed only for highly ovary-biased genes due to female-specific patterns of selection that are related to the peculiar reproduction mode of S. aurata, first maturing as male, then as female. To our knowledge, these findings represent the first genome-wide analysis on sex-biased loci in a hermaphrodite vertebrate species, demonstrating how having two sexes in the same individual profoundly affects the fate of a large set of evolutionarily relevant genes.European Union KBBE.2013.1.2-10 European Community 311920 Fondazione Cassa di Risparmio Padova e Rovigo FCT - Foundation for Science and Technology research grant SPARCOMP under the Call ARISTEIA I of the National Strategic Reference Framework - by the EU 36 Hellenic Republic through the European Social Fundinfo:eu-repo/semantics/publishedVersio

    A rare exception to Haldane's rule: are X chromosomes key to hybrid incompatibilities?

    Get PDF
    This work was funded by NERC (NE/G014906/1, NE/L011255/1, NE/I027800/1). Additional funding from the Orthopterists’ Society to PM is also gratefully acknowledged.The prevalence of Haldane’s rule suggests that sex chromosomes commonly have a key role in reproductive barriers and speciation. However, the majority of research on Haldane’s rule has been conducted in species with conventional sex determination systems (XY and ZW) and exceptions to the rule have been understudied. Here we test the role of X-linked incompatibilities in a rare exception to Haldane’s rule for female sterility in field cricket sister species (Teleogryllus oceanicus and T. commodus). Both have an XO sex determination system. Using three generations of crosses, we introgressed X chromosomes from each species onto different, mixed genomic backgrounds to test predictions about the fertility and viability of each cross type. We predicted that females with two different species X chromosomes would suffer reduced fertility and viability compared with females with two parental X chromosomes. However, we found no strong support for such X-linked incompatibilities. Our results preclude X–X incompatibilities and instead support an interchromosomal epistatic basis to hybrid female sterility. We discuss the broader implications of these findings, principally whether deviations from Haldane’s rule might be more prevalent in species without dimorphic sex chromosomes.PostprintPeer reviewe

    Sex-specific Trans-regulatory Variation on the Drosophila melanogaster X Chromosome

    Get PDF
    The X chromosome constitutes a unique genomic environment because it is present in one copy in males, but two copies in females. This simple fact has motivated several theoretical predictions with respect to how standing genetic variation on the X chromosome should differ from the autosomes. Unmasked expression of deleterious mutations in males and a lower census size are expected to reduce variation, while allelic variants with sexually antagonistic effects, and potentially those with a sex-specific effect, could accumulate on the X chromosome and contribute to increased genetic variation. In addition, incomplete dosage compensation of the X chromosome could potentially dampen the male-specific effects of random mutations, and promote the accumulation of X-linked alleles with sexually dimorphic phenotypic effects. Here we test both the amount and the type of genetic variation on the X chromosome within a population of Drosophila melanogaster, by comparing the proportion of X linked and autosomal trans-regulatory SNPs with a sexually concordant and discordant effect on gene expression. We find that the X chromosome is depleted for SNPs with a sexually concordant effect, but hosts comparatively more SNPs with a sexually discordant effect. Interestingly, the contrasting results for SNPs with sexually concordant and discordant effects are driven by SNPs with a larger influence on expression in females than expression in males. Furthermore, the distribution of these SNPs is shifted towards regions where dosage compensation is predicted to be less complete. These results suggest that intrinsic properties of dosage compensation influence either the accumulation of different types of trans-factors and/or their propensity to accumulate mutations. Our findings document a potential mechanistic basis for sex-specific genetic variation, and identify the X as a reservoir for sexually dimorphic phenotypic variation. These results have general implications for X chromosome evolution, as well as the genetic basis of sex-specific evolutionary change

    DNA sequence diversity and the efficiency of natural selection in animal mitochondrial DNA

    Get PDF
    Selection is expected to be more efficient in species that are more diverse because both the efficiency of natural selection and DNA sequence diversity are expected to depend upon the effective population size. We explore this relationship across a data set of 751 mammal species for which we have mitochondrial polymorphism data. We introduce a method by which we can examine the relationship between our measure of the efficiency of natural selection, the nonsynonymous relative to the synonymous nucleotide site diversity (πN/πS), and synonymous nucleotide diversity (πS), avoiding the statistical non-independence between the two quantities. We show that these two variables are strongly negatively and linearly correlated on a log scale. The slope is such that as πS doubles, πN/πS is reduced by 34%. We show that the slope of this relationship differs between the two phylogenetic groups for which we have the most data, rodents and bats, and that it also differs between species with high and low body mass, and between those with high and low mass-specific metabolic rate

    Shifting patterns of natural variation in the nuclear genome of caenorhabditis elegans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome wide analysis of variation within a species can reveal the evolution of fundamental biological processes such as mutation, recombination, and natural selection. We compare genome wide sequence differences between two independent isolates of the nematode <it>Caenorhabditis elegans </it>(CB4856 and CB4858) and the reference genome (N2).</p> <p>Results</p> <p>The base substitution pattern when comparing N2 against CB4858 reveals a transition over transversion bias (1.32:1) that is not present in CB4856. In CB4856, there is a significant bias in the direction of base substitution. The frequency of A or T bases in N2 that are G or C bases in CB4856 outnumber the opposite frequencies for transitions as well as transversions. These differences were not observed in the N2/CB4858 comparison. Similarly, we observed a strong bias for deletions over insertions in CB4856 (1.44: 1) that is not present in CB4858. In both CB4856 and CB4858, there is a significant correlation between SNP rate and recombination rate on the autosomes but not on the X chromosome. Furthermore, we identified numerous significant hotspots of variation in the CB4856-N2 comparison.</p> <p>In both CB4856 and CB4858, based on a measure of the strength of selection (k<sub>a</sub>/k<sub>s</sub>), all the chromosomes are under negative selection and in CB4856, there is no difference in the strength of natural selection in either the autosomes versus X or between any of the chromosomes. By contrast, in CB4858, k<sub>a</sub>/k<sub>s </sub>values are smaller in the autosomes than in the X chromosome. In addition, in CB4858, k<sub>a</sub>/k<sub>s </sub>values differ between chromosomes.</p> <p>Conclusions</p> <p>The clear bias of deletions over insertions in CB4856 suggests that either the CB4856 genome is becoming smaller or the N2 genome is getting larger. We hypothesize the hotspots found represent alleles that are shared between CB4856 and CB4858 but not N2. Because the k<sub>a</sub>/k<sub>s </sub>ratio in the X chromosome is higher than the autosomes on average in CB4858, purifying selection is reduced on the X chromosome.</p

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore